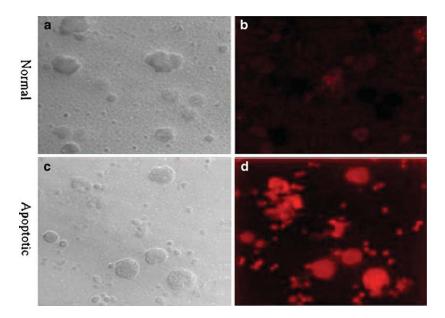

PSVue® 749 Targets infectious foci in mice


Publication: Targeting Apoptosis for Optical Imaging of Infection

Results reported in Molecular Imaging and Biology online:03 May 2011 demonstrated that PSVue $^{\$}$ 749 can target PS on the outer leaflet of apoptotic or necrotic neutrophils as well as gram-positive microorganisms. Bacterial infection and sterile inflammation were induced in separate groups of mice. Imaging of targeted PSVue $^{\$}$ 749 was performed using Kodak Multispectral FX-Pro system. Images were visible at 5 min post-injection. At 3 h post-infection target to background intensity ratios were 6.6 \pm 0.2 and 3.2 \pm 0.5 for infection foci and inflammation, respectively. The following figure shows optical images of a mouse with bacterial infection.

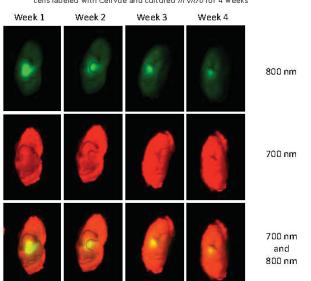
Dynamic optical imaging of bacterial infection with PSVeu 794

Confocal microscopy of normal and apoptotic neutrophils as shown in the following figure confirmed excellent specificity of PSVue[®] 749 for outer leaflet PS.

Authors and Affiliations: Mathew L. Thakur¹, Kaijun Zhang¹, Bishnuhari Paudyal¹ ,Devadhas Devakumar¹,Maria Y. Covarrubias³, Changpo Cheng² Brian D. Gray⁴, Eric Wickstrom², Koon Y. Pak⁴

¹Department of Radiology, Thomas Jefferson University, 1020 Locust Street, Suite 359-JAH, Philadelphia, PA 19107

²Department of Biochemistry Molecular Biology, Thomas Jefferson University, Philadelphia, PA USA


³Bioimaging, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA

⁴Molecular Targeting Technologies, Inc, West Chester, PA USA

CellVue® NIR815 for General Cell Membrane Labeling

CellVue® **NIR815** tracks human umbilical cord blood stem cells within an intervertebral disk explant.

Results reported in the 2011 Rush Orthopedics Journal demonstrated success using CellVue® NIR815 fluorescent dye to track stem cell survival in rabbit disk culture. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) were stained with CellVue® NIR815 and transplanted into cultured rabbit intervertebral disk explants. Cells continued to fluoresce green after 1 month in culture. When these green images are overlapped with a noninjected rabbit disk that has a red background fluorescence the resulting color for the stem cells has a yellow fluorescent appearance (figure below). The fluorescent color diminished only slightly over the 4-week culture period.

Rabbit Intervertebral Disc Organ Explants injected with human umbilical cord mesenchymal stem cells labeled with CellVue and cultured *in vitro* for 4 weeks

Figure courtesy of Dr. Ana Chee

Authors and Affiliations: Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois (Drs. Ana Chee, Yejia Zhang, and Howard An); Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania (Drs. Dessislava Markova and Vladimir Markov and Mr. Chander Gupta); and Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey (Dr. Biagio Saitta).

PsVue

- Wyffels, L.; Gray, B.; Barber, C.; Pak, KY.; Forbes, S.; Mattis, J.; Woolfenden, J.; Liu, Z.; *Detection of myocardial ischemia-reperfusion injury using a fluorescent near-infrared zinc(II)-dipicolylamine probe and 99mTc-glucarate*. Molecular Imaging and Biology.
- Thakur, M.; Zhang, K.; Paudyal, B.; Devakumar, D.; Covarrubias, M.; Cheng, C.; Gray, B.; Wickstrom, E.; Pak, KY. *Targeting Apoptosis for Optical Imaging of Infection*. Molecular Imaging and Biology, 2012, 14, 163-171.
- Wyffels, L.; Gray, B.; Barber, C.; Woolfenden, J.; Pak, KY. Liu, Z.; *Synthesis and preliminary evaluation of radiolabeled bis(zinc(II)-Dipicolylamine) coordination complexes as cell death imaging agents*. Bioorganic and Medicinal Chemistry, 2011, 19, 3425-3433.
- Liu X, Cheng D, Gray BD, Wang Y, Akalin A, Rusckowski M, Pak KY, Hnatowich DJ. Radiolabeled Zn-DPA as a potential infection imaging agent. Nucl Med Biol. 2012 Feb 7
- White A, Gray BD, Pak KY, Smith BD. Deep-red fluorescent imaging probe for bacteria. Bioorganic and Medicinal Chemistry Letters. 2012; March 7 (epub ahead of print)
- Buehler A., Herzog E., Ale A., Smith BD., Ntziachristos V., Razansky D. High Resolution tumor targeting in living mice by means of multispectral optoacoustic tomography. EJNMMI Research 2012, 2:14
- Smith BD, Xie BW, Beek ER, Que I., Blankevoort V., Xiao S., Cole EL, Hoehn M., Kaijzel EL, Lowik C., Smith BD *Multicolor fluorescence imaging of traumatic brain injury in a cryolesion mouse model*. ACS Chem Neurosci 2012; in press.

CellVue

- Gonzales et al. *Mycobacterium tuberculosis H37 Rv induces ectosome release in human olymorphonuclear neutrophils*. Tuberculosis, 2010, 90, 125-134.
- Kaimal V, Chu Z, Mahller YY, Papahadjopoulos-Sternberg B, Cripe TP, Holland SK, Qi X. Saposin C coupled lipid nanovesicles enable cancer-selective optical and magnetic Resonance imaging. Mol Imaging Biol. 2011 Oct;13(5):886-97.

NeuroVue

- Budefeld, T., Tobet, S.A., Majdic, G., 2011. Altered position of cell bodies and fibers in the ventromedial region in SF-1. Exp. Neuro. 232, 176-184.
- Pan, N., Jahan, I., Kersigo, J., Kopecky, B., Santi, P., Johnson, S., Schmitz, H., Fritzsch, B., 2010, Conditional deletion of *Atoh1* using *Pax2-Cre* results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hearing Research; 275, 66-80.

SRFluor

• Cole, E.; Easwaran A.; Xiao, S.; Smith, B.; Smith, B.D., *Water Soluable, Deep-red Fluorescent Squarine Rotaxanes*. 2011 Org. Bio. Chem. (epub ahead of print)

• Beverina, L.; Salice, P.; Squaraine Compunds: *Tailored Design and Synthesis Towards a Variety of Material Science Applications*. Eur. J. Org. Chem 2010, 1207-1225.