

MOLECULAR TARGETING TECHNOLOGIES, INC.

Cyanine Dyes and Cyanine Dye Building Blocks

Cyanine dyes exhibit large molar absorptivities (\sim 150,000-250,000 M $^{-1}$ cm $^{-1}$) and moderate quantum yields resulting in extremely bright fluorescence signals. Therefore, cyanines have proven useful in several fields including photography, biology, laser technology and analytical chemistry.

MTTI offers a series of unique lipophilic cyanine dyes which may be useful for biophysical studies of lipid bilayers of cells or other artifical membranes. In particular, these compounds may be useful as molecular probes of membrane potential, for labeling lipid bilayers and for labeling hydrophobic pockets of lipo-proteins.

MTTI also offers several substituted indole derivatives which can be used as building blocks for the construction of new cyanine dye derivatives for use in the aforementioned fields.

CYANINE DYE PRODUCT LIST

Custom Cyanine Dyes Also Prepared!

Catalog #	Structure/Name	Formula/MW	Size	Price
CN-1001	$N + C_3H_7$ DiI $C_3(5)$	C ₃₁ H ₃₉ IN ₂ 566.6	1 mg	\$112.50
CN-1002	$C_{6}H_{13}$ DiI $C_{6,3}(5)$	C ₃₄ H ₄₅ IN ₂ 608.6	1 mg	\$112.50
CN-1003	$N + C_{10}H_{21}$ Dil $C_{10,3}(5)$	C ₃₈ H ₅₃ IN ₂ 664.7	1 mg	\$112.50
CN-1004	DiI C ₈ (5)	C ₄₁ H ₅₉ IN ₂ 706.8	1 mg	\$112.50
CN-1005	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$	C ₄₂ H ₆₁ IN ₂ 720.8	1 mg	\$112.50

See reverse for more products

MOLECULAR TARGETING TECHNOLOGIES, INC.

Catalog #	Structure/Name	Formula/MW	Size	Price
CN-1006	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₆₀ H ₁₀₅ ClN ₂ O ₄ 953.9	1 mg	\$112.50
CN-1007	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₆₄ H ₁₁₃ ClN ₂ O ₄ 1010.0	1 mg	\$112.50
CN-1008	$\bigcap_{\substack{N \\ C_{22}H_{45}}}^{N + } \bigcap_{\substack{C_{3}H_{7}}}^{N} DiI C_{22,3}(5)$	C ₅₀ H ₇₇ IN ₂ 833.1	1 mg	\$112.50
CN-1009	Dil C _{22,12} (5)	C ₅₉ H ₉₅ IN ₂ 959.3	1 mg	\$112.50
CN-1010	Dil C ₂₂ (5)	C ₆₉ H ₁₁₅ IN ₂ 1099.6	1 mg	\$112.50
CN-1011	Dil C ₂₈ (5)	C ₈₁ H ₁₃₉ IN ₂ 1267.9	1 mg	\$112.50
IN-1001	HO ₂ C N 2,3,3-trimethyl-5-carboxy-3H-indole	C ₁₂ H ₁₃ NO ₂ 203.2	1 gram	\$161.00
IN-1002	2,3,3-trimethyl-5-phthalimidomethyl-3H-indole	$C_{20}H_{18}N_2O_2$ 318.4	1 gram	\$161.00
IN-1003	HO₃S N 2,3,3-trimethyl-5-sulfo-3H-indole	C ₁₁ H ₁₃ NO ₃ S 239.3	1 gram	\$161.00

For further information or to place an order please contact Dr. Brian Gray by email: briangray@mtarget.com or phone: 610-738-7938

COMPANY PROFILE

Molecular Targeting Technologies, Inc. is a privately held US-based Biotechnology Company developing novel medical imaging products. MTTI has licensed fluorescence based technologies from PTI Research Inc. (PTIR), giving MTTI the worldwide rights to manufacture, sell and/or distribute PTIR's NeuroVue® and CellVue® product lines for *in vitro* and *in vivo* research applications.

CORPORATE HEADQUARTERS

Molecular Targeting Technologies, Inc. 833 Lincoln Ave., Unit 9 West Chester, PA 19380 P: 610.738.7938 F: 610.738.7928 Please visit our website at www.mtarget.com

MOLECULAR TARGETING TECHNOLOGIES, INC.