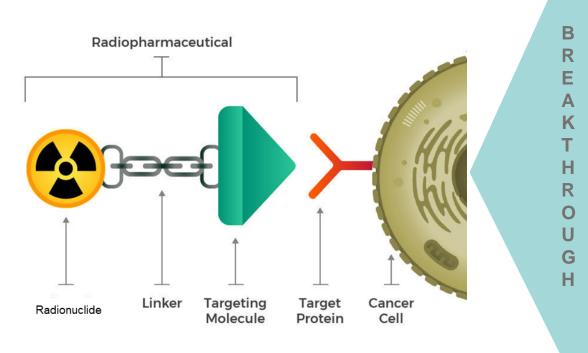
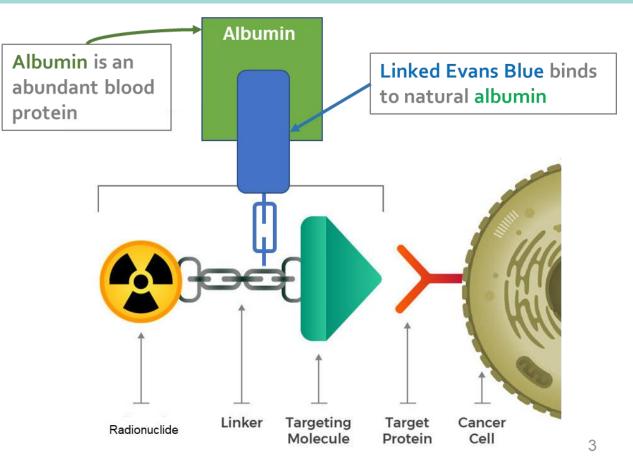
MTTI's Radiopharmaceuticals A NEW GENERATION OF TARGETED RADIOTHERAPEUTICS (TRT)


Chris Pak

cpak@mtarget.com



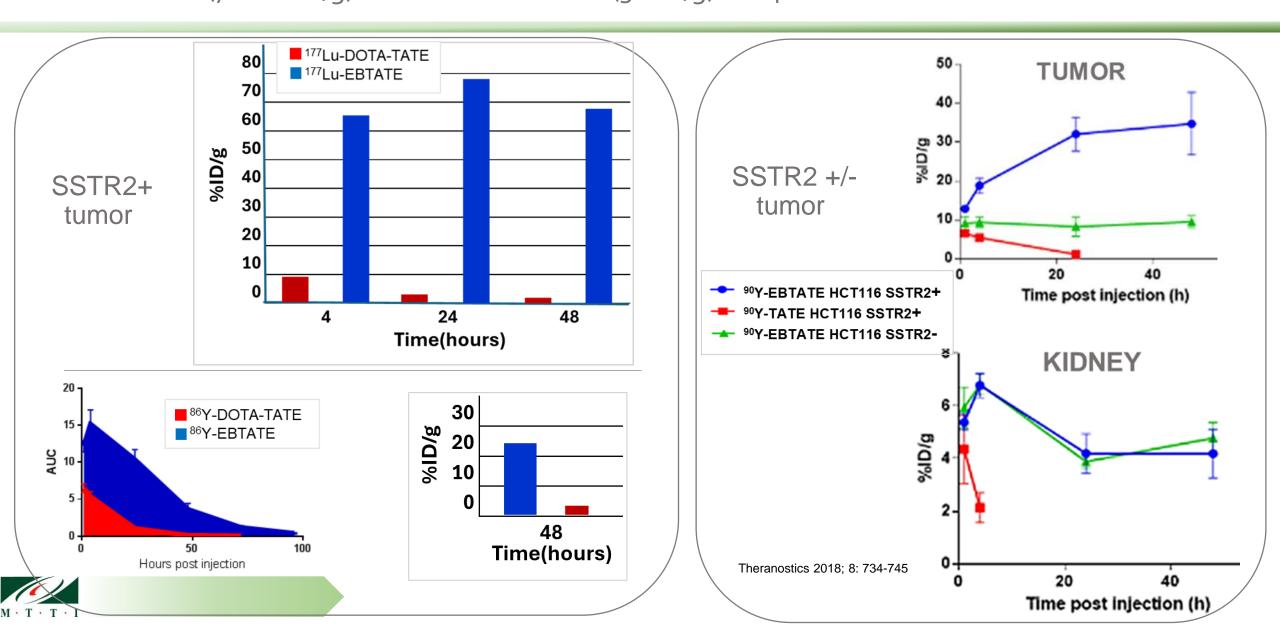
A long-acting, more effective TRT platform

TRTs like Lutathera have short biologic half-lives, limiting efficacy

Evans blue (EB) – extends blood half-life increasing tumor uptake, improving efficacy.

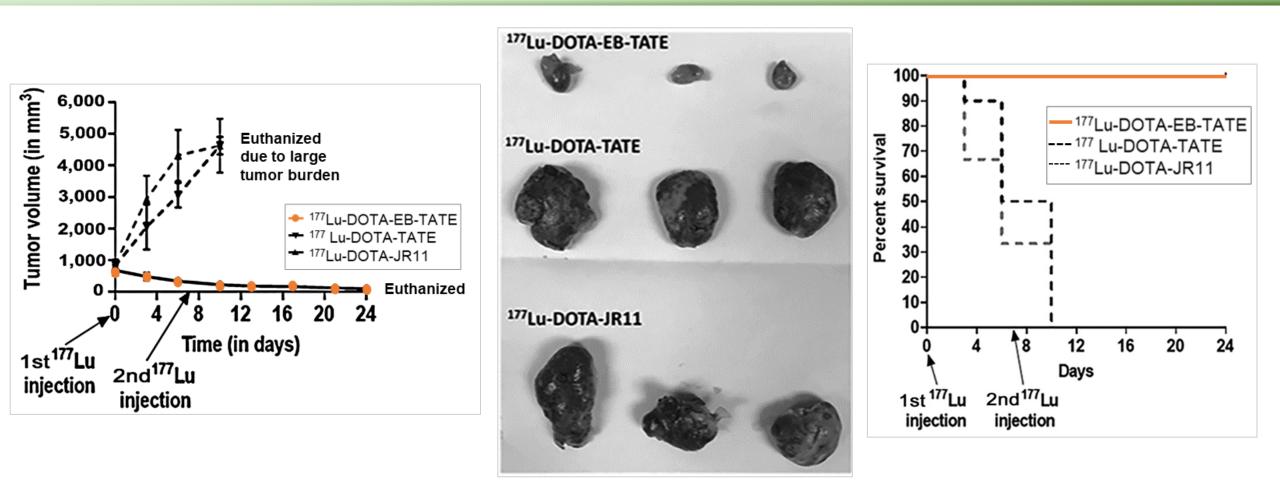
Transforming radiotherapy with an Evans blue (EB) moiety

- EB binds to albumin, abundant in the blood (50 mg/mL), resulting in a longer circulatory half-life
- Each albumin binds 8-14 molecules of EB
- Better tissue absorption and retention enhance treatment
- Significantly lower isotope use while maintaining efficacy and safety, improves costs and health economics



Evans blue (EB) Advantages - transforming radiotherapy

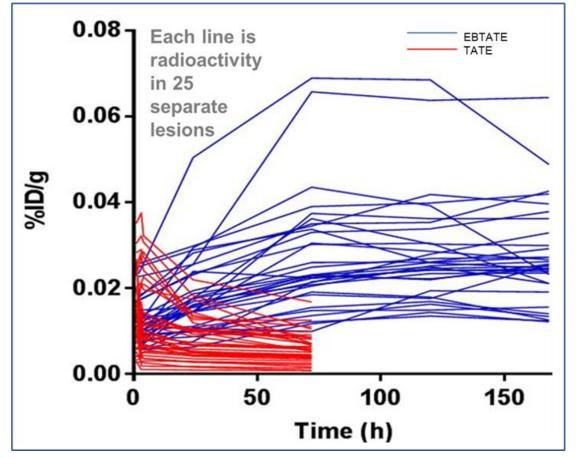
	¹⁷⁷ Lu-EBTATE vs. ¹⁷⁷ Lu-DOTA-TATE
Circulatory half-life	Binds to albumin, an abundantblood protein, resulting in aClears rapidlylonger half-life
Tumor uptake in HCT116 CRC tumor model at 24H	78.8% ID/g 3% ID/g
Tumor retention in NET patients	0.049MBq-h/MBq/g 8 Fold greater!
Tumor remission in AR42J pancreatic cancer tumor model	Complete None None



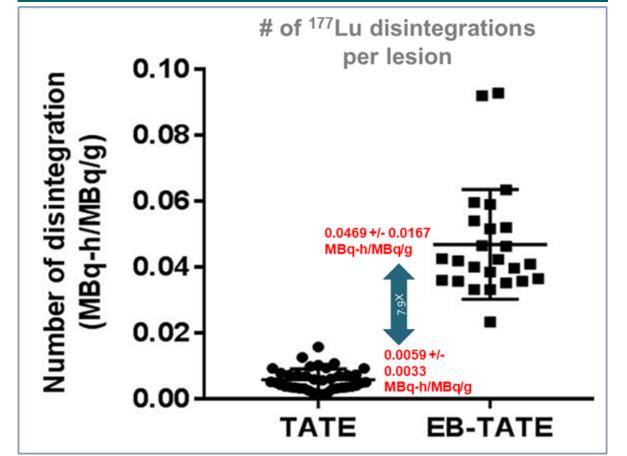
EB impact: Greater retention in HCT116 CRC tumor (Preclinical) ¹⁷⁷Lu-EBTATE (78.8% ID/g) vs ¹⁷⁷Lu-DOTA-TATE (3%ID/g) at 24 h

EB impact: Improved survival in AR42J, pancreatic cancer (Preclinical)

¹77Lu-EBTATE (complete tumor remission) vs. TATE analogs (no remission)



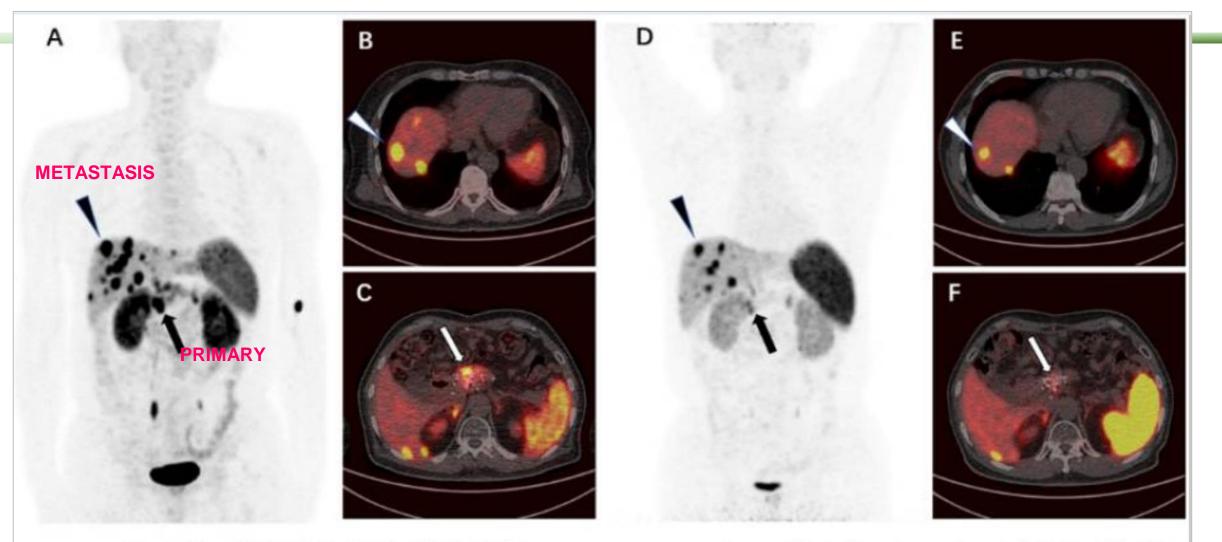
DOTA-EB-TATE is superior to other somatostatin analogues in the treatment of SSTR2-expressing tumors



EB improves PK/PD in patients

EBTATE sustained tumor absorption in NET patients

EBTATE shows a 7.9-fold tumor radiation count increase vs 177Lu-DOTA-TATE

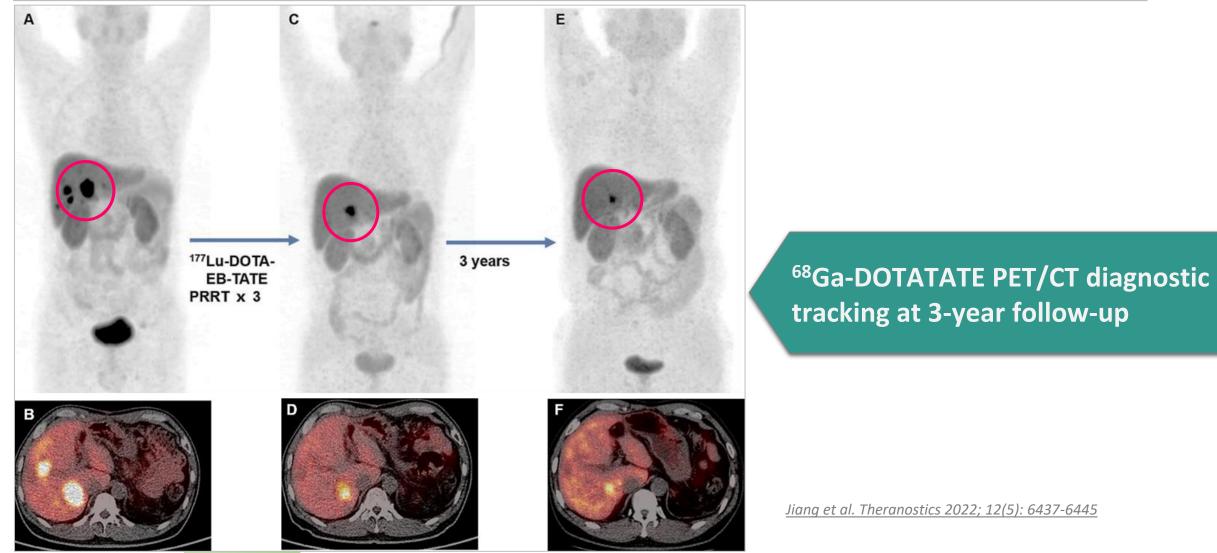


Zhang et al. J Nucl Med 2018; 59: 1699-1705

EB Platform - targeting unmet medical needs

DRUG	TARGET RECEPTOR	INDICATIONS	DEVELOPMENT STAGE		MARKET POTENTIAL	
	GEP-NET	Preclincal studies showed superiority over other SSTR2 targeting PRRTs	Best-in-class potential	~430,000 cases (global)		
EBTATE®	EBTATE® Somatostatin receptor ¹⁷⁷ Lu-EB-DOTA-TATE type 2 (SSTR2)		60+ patients treated. Proved safety and efficacy.	\$1 Bn		
¹⁷⁷ Lu-EB-DOTA-TATE		Radioactive iodine- resistant/refractory (RAI-R) & Hürthle cell (HTC) thyroid cancers	Approved for Phase I/II	\$500M	~140,000 cases (global)	
	Nasopharyngeal cancer (NPC)	Approved for Phase I/II	\$500M	~130,000 cases (primarily SE Asia)		
			Ready for Phase I \$500M		~164,000 cases (global)	
	SSTR2	GEP-NET	Target Phase I in 2025	\$1Bn	~430,000 cases (global)	
²²⁵ Ac-EB-DOTA-TATE	SSTRZ	Small cell lung cancer	Talget Flidse Till 2025	\$500M	~130,000 cases (primarily SE Asia)	
EBRGDTM Integrin αvβ3 ¹⁷⁷ Lu-EB-DOTA-RGD		NSCLC - first in class	Strong preclinical efficacy in NSCLC, GBM & CRC.		~2M cases (global)	
	Integrin αvβ3	GBM	Pilot GBM patient study showed robust, focal target engagement	\$7Bn		
		Colorectal cancer - first in class				

A single low dose (20 mCi) of EBTATE reduces NET tumor size


Baseline 68Ga-DOTATATE PET/CT

3 months after low-dose (19.5 mCi) of ¹⁷⁷Lu-DOTA-EB-TATE

Long-Term Efficacy

EBTATE (3 cycles) achieved favorable 3-year follow-up results in 29 NET patients

EBTATE was safe and well-tolerated in NET patients

Jiang et al. Theranostics 2022; 12(5): 6437-6445

Low, long-term toxicity (CTCAE 5.0) in 29 patients									
Toxicity	CTC-grade	Baseline	1st cycle		2nd cycle		3rd cycle		Avg.Grade 3&4 AE (%)
			2 wks	4 wks	2 wks	4 wks	2 wks	4 wks	
Leukopenia	Grade-1 & 2	4	6	5	6	10	6	4	0%
сечкоренна	Grade-3 & 4	0	0	0	0	0	0	0	070
Thrombooutononia	Grade-1 & 2	0	3	3	2	4	2	3	13%
Thrombocytopenia	Grade-3 & 4	0	0	2	1	1	1	0	12/0
Anemia	Grade-1 & 2	3	6	4	5	5	4	4	3%
Allellild	Grade-3 & 4	1	0	1	0	0	0	0	3/0
Nephrotoxicity	Grade-1 & 2	7	1	2	1	1	1	0	0%
	Grade-3 & 4	0	0	0	0	0	0	0	070
Hepatotoxicity	Grade-1 & 2	5	1	3	2	1	1	0	20/
	Grade-3 & 4	0	0	1	0	0	0	0	3%

EBTATE Clinical Benefits

safe & effective at 40% radiation exposure

CLINICAL BENEFIT	¹⁷⁷ Lu-EBTATE	vs. ¹⁷⁷ Lu-DOTA-TATE*
Lower cumulative radiation exposure	Cumulative 11.1 GBq	Cumulative 29.6 GBq
Fewer doses	3 cycles x 100mCi	4 cycles x 200mCi
Higher ORR	43-50%	43%
Comparable disease control	86.1% after 3Y	79.4-88%
Stronger IP	Composition of matter to 2037	Formulation patent
Toxicity/admin burden	Doesn't require amino acid pretreatment	Mandated amino acid pretreatment

* Lutathera plus octreotide LAR. Earlier Lutathera monotherapy studies demonstrated ORR of 13-19%. EBTATE shown here is monotherapy

Long acting [²²⁵Ac]Ac-EBTATE is highly efficacious against somatostatin receptor-2-positive neuroendocrine tumors

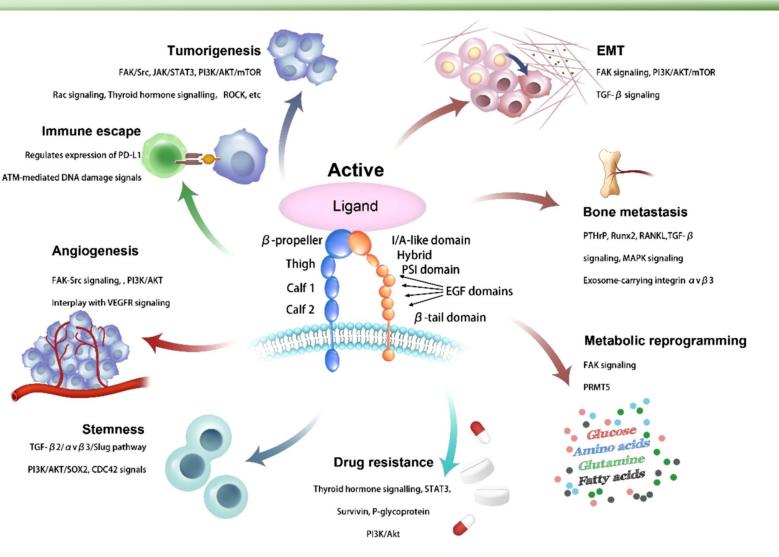
- Two doses of ²²⁵Ac-EBTATE at 34 kBq, 10 d apart, were well tolerated biochemically and hematologically for 28 d
- ²²⁵Ac-EBTATE (2x 30 kBq, 10 d apart), in NCH-H524 [small cell lung cancer] showed 80% complete remission, 100% survival (d83) and 105.6% TGI, 2-fold more than
 ²²⁵Ac-DOTATATE on d20
- ²²⁵Ac-EBTATE (2x 30 kBq, 10 d apart) in NCH-H727 [lung/carcinoid] led to partial responses with 64.4% TGI on d28
- Using 60% less activity of ²²⁵Ac-EBTATE is as effective as ²²⁵Ac-DOTATATE

EB Platform IP

- "Chemical conjugates of Evans blue derivatives and their use as radiotherapy and imaging agents"
- Approved Countries:
 - US,(US 10,696,631 B2),
 - Europe (EP 3455 206 B1),
 - China (CN 109153641B),
 - Japan (JP6946342B2),
 - Singapore (SG11201809982RA)
- Patent life: 2037
- Licenses: exclusive global license from the National Institutes of Health includes conjugating any new targeting peptides with EB.

- Transforming radiotherapy with Evans blue(EB)
 - Greater ¹⁷⁷Lu-EBTATE uptake
 - Complete remission in AR42J pancreatic model
 - 8-fold greater retention in NET patients
 - Similar safety to ¹⁷⁷Lu-DOTATATE with 40% of the radioactivity
- ²²⁵Ac-EBTATE showed 80% complete remission, 100% survival and 105.6% TGI, 2-fold more than ²²⁵Ac-DOTATATE

EBRGD


EBRGD targets $\alpha\nu\beta_3$, an integrin with multiple roles in cancer

αvβ3 in every step of tumor progression:

- tumorigenesis
- epithelial- mesenchymal transition (EMT)
- bone metastasis
- metabolic reprogramming
- drug resistance
- stemness

 $\mathbf{M} \cdot \mathbf{T} \cdot \mathbf{T} \cdot \mathbf{J}$

- angiogenesis
- immune escape

Pharmacological Research 189 (2023) 106694

$\alpha\nu\beta_3$ advantage as cancer target over other integrins

- αvβ3 has low or no expression in normal tissues
- Expression level increases in tumors and correlates with tumor aggressiveness
 - $\circ \ \ \, \text{Some integrins, such as $\alpha 2\beta 1$,} \\ \text{decrease in tumor cells}$
- αvβ₃ interacts with growth factors highly expressed in tumors
 - αvβ₃ and FGFR interaction induces angiogenesis downstream of FGF binding, and αvβs and VEGFR₂ promote VEGF-induced angiogenesis
- αvβ3 is overexpressed in tumors with higher frequency than other integrins

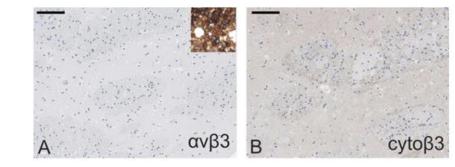
Tumour type	Integrins expressed*	Associated phenotypes
Melanoma	ανβ3 and α5β1	Vertical growth phase ^{35,172–174} and lymph node metastasis
Breast	α6β4 and ανβ3	Increased tumour size and grade ¹⁷⁶ , and decreased survival ¹⁷⁷ (α 6 β 4). Increased bone metastasis ^{36–38,64} (α v β 3)
Prostate	ανβ3	Increased bone metastasis ³⁹
Pancreatic	ανβ3	Lymph node metastasis ⁴⁰
Ovarian	α4β1 and ανβ3	Increased peritoneal metastasis ¹⁷⁸ (α4β1) and tumour proliferation ¹⁷⁹ (ανβ3)
Cervical	ανβ3 and ανβ6	Decreased patient survival
Glioblastoma	ανβ3 and ανβ5	Both are expressed at the tumour–normal tissue margin and have a possible role in invasion ¹⁸¹
Non-small-cell lung carcinoma	α5β1	Decreased survival in patients with lymph node- negative tumours ¹⁸²
Colon	ανβ6	Reduced patient survival

αvβ3 integrin is overexpressed in >76% NSCLC patients*

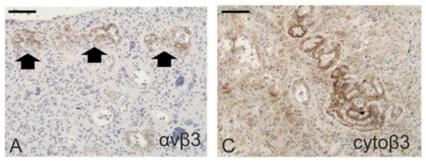
- $\alpha \nu \beta_3$ expressed in tumor and not in normal cells
- αvβ₃ correlates with tumor grade, progression, metastases and advanced clinical stage

*Boger et al. Virchows Arch. 2014;464(1):69-78.; Echavidre et. al., Pharmaceutics. 2022;14(5):1053; Jin et al. PLoS One. 2012;7(10):e48575, Kariya et. al. Comm Biol 2021;4:490.

- GBM
- NSCLC
- Breast cancer
- Melanoma
- Sarcoma
- RCC
- SCCHN
- Glioma
- Musculoskeletal cancers
- Rectal Cancer
- Bone metastases



$\alpha\nu\beta_3$ overexpressed in neovascular cells & 60% of GBM patients*


- αvβ₃ integrin has low or no expression in normal tissues, overexpressed in many tumors
- RGD based PET tracer detects 100% primary lesions in cancer
- αvβ₃ was found in neovascular cells and tumor cells

Brain Pathology 2008;18:378; Theranostics 2016;6:78, J Neuropath Exp Neur 2013;72:194

$\alpha\nu\beta_3$ has low/no expression in normal human brain samples

 $\alpha\nu\beta_3$ has elevated expression in GBM tumor vessels and parenchymal region

	αvβ3 positive tissues
Normal brain	0/78
Glioblastoma (WHO IV)	86/160

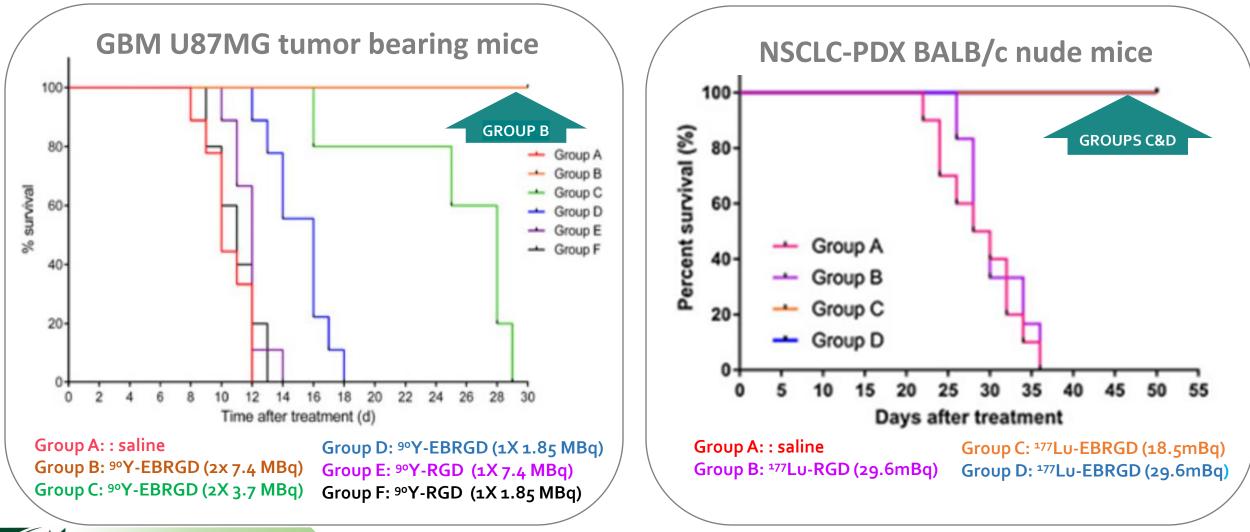
*Schittenhelm 2013, Echavidre 2022

Merck KGaA spent >10 years developing a targeted therapy for $\alpha\nu\beta_3$ in GBM

- Cilengitide, a peptide $\alpha\nu\beta3$ antagonist, failed in a Phase 3 GBM trial
- Although safe, cilengitide did not improve overall survival
- Proposed rationale for the failure:
 - Signaling based therapy is not potent enough to kill cancer cells

Short residence time is insufficient

EBRGD may overcome these challenges.


Novartis began a Phase I trial with an $\alpha\nu\beta_3$ and $\alpha\nu\beta_5$ dual targeting TRT (116 pts)

- A Phase I, Open-label, Multi-center Study to Evaluate the Safety, Tolerability, Dosimetry and Preliminary Activity of [¹⁷⁷Lu]Lu-FF58 in Patients (N=116)With Selected Advanced Solid Tumors (NCT05977322)
- FF58 is an $\alpha\nu\beta_3$ and $\alpha\nu\beta_5$ dual targeting molecule without the albumin binding motif

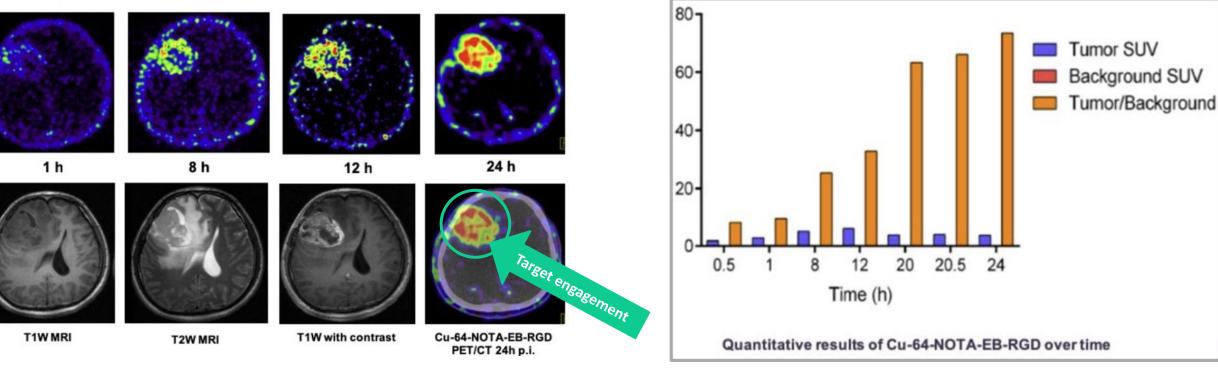
MTTI demonstrated RGD without Evans blue is ineffective in tumor control while EBRGD is effective in preclinical models.

EB Impact: Improved survival in GBM and NSCLC (Preclinical) ¹⁷⁷Lu & ⁹⁰Y EBRGD vs. RGD analogs

EBRGD is designed to overcome $\alpha\nu\beta_3$ therapy failures

A validated target

- αvβ₃ is required for angiogenesis and tumorigenesis in cancer
- $\alpha \nu \beta_3$ therapy has been challenging


EBRGD advantage • EBRGD extends *in vivo* circulatory half-life and tumor residence time, enabling effective payload delivery

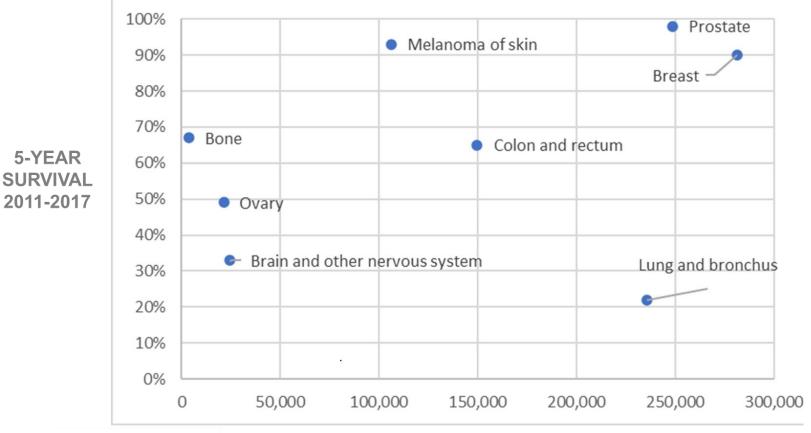
Strong *in vivo* efficacy - Convincing efficacy in $\alpha\nu\beta_3$ positive NSCLC, CRC and GBM model

⁶⁴Cu-EBRGD – robust target engagement in GBM patients

Glioblastoma Multiforme Patient

Axial PET slices of glioblastoma patient injected with ⁶⁴Cu-EB-RGD at different time points p.i.

Zhang et al. J Nucl Med 2020; 61(Suppl 1): 349


Signal/background ratio increased over time

EBRGD Opportunities

Multiple cancers express Integrin $\alpha_v \beta_3$ therapeutic targets:

- Overexpressed in almost all metastatic cancers
- ~ 1 million US patients annually

2021 US INCIDENCE (est.)

- $\alpha\nu\beta_3$ is overexpressed in NSCLC, CRC, GBM and many other cancers
- EBRGD demonstrated:
 - ✓ efficacy in NSCLC, CRC and GBM models
 - ✓ tumor eradication in high expressing PDXανβ3+
 - ✓ synergistic effect with immunotherapy
 - ✓ target engagement and sustained tumor absorption in GBM patients

EBRGD IND-enablement update

- Completed GLP toxicology and GMP manufacturing (30,000 doses in cGMP storage)
- Demonstrated acceptable radiolabeling
- Clinical protocols and sites identified for NSCLC and GBM
- Pilot study completed (3 healthy, 2 GBM pts)
- Target IND submission 2025

Pipeline

PRODUCT	TARGET	INDICATION	PRECLIN	PHASEI	PHASE II	PHASE III	MARKET
	THERAPE	UTICS					
Rabies mAb	Rabies antigen	Rabies		OUTLICEN	SED - LAUN	CHED 2022	
BPRDP056	Phosphatidylserine	Multiple cancers	ουτιι	CENSED			
	SSTR2	Neuroendocrine tumors	PHASE I/II (n=60 pts)				
¹⁷⁷ Lu-EBTATE [®]	SSTR2	RAI-R & Hürthle Cell thyroid cancers	PHA	SE I/II			
SSTR2		Nasopharyngeal cancer	PHAS	SE IB/II			
225Ac-EBTATE	SSTR2	Small cell lung cancer	Q1 2	025			
AC-EBIAIE	SSTR2	Neuroendocrine tumors	Q2 2	2025			
177. can on TM	integrin αvß₃	Non-small cell lung cancer	Q2 2	025			
¹⁷⁷ Lu-EBRGD TM integrin αvß	integrin αvß₃	Glioblastoma multiforme	PILOT (n=5 pts)	Phase I/II	Q2 2025	
	DIAGNO	STICS					
TDURA	Cell death	Colorectal cancer	DOSIMETR	Y (n=6 pts)			
CypH-11 Spray	NIR guided surgery	Colorectal & peritoneal cancers	PHASEI	Q3 2025			

MTTI Team

Chris Pak, PhD - President & CEO Centocor

> Scotgen Biopharmaceuticals

Mallinckrodt

- CBO McKinsey & Company

Pharmaceutical Consulting

Jeffrey Mattis, PhD, - SVP Regulatory Affairs

Bryan Gray, PhD, - SVP Product Development

SB SmithKline Beecham

ZYNAXIS PTI RESEARCH

Cambridge Solutions

John Farah, PhD - Executive Advisor Cephalon MELIOR

AEOLUS

Michael Silvon PhD, MBA - SVP Business Development

CHARLES RIVER

∾ BASi **ZENECA**

Clinical team/advisors

Deep industry experience and record of drug approval

Jerry Huang, MD PhD - SVP **Clinical Development** UNOVARTIS

Richard Wahl, MD - Clinical Advisor

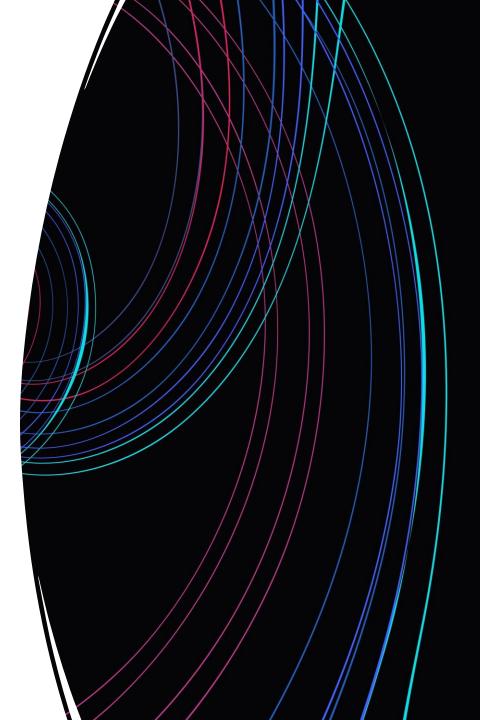
Chairman of the Department of Radiology and Director of the Mallinckrodt Institute of Radiology at Washington University School of Medicine

Daniel Pryma, MD - Clinical Advisor

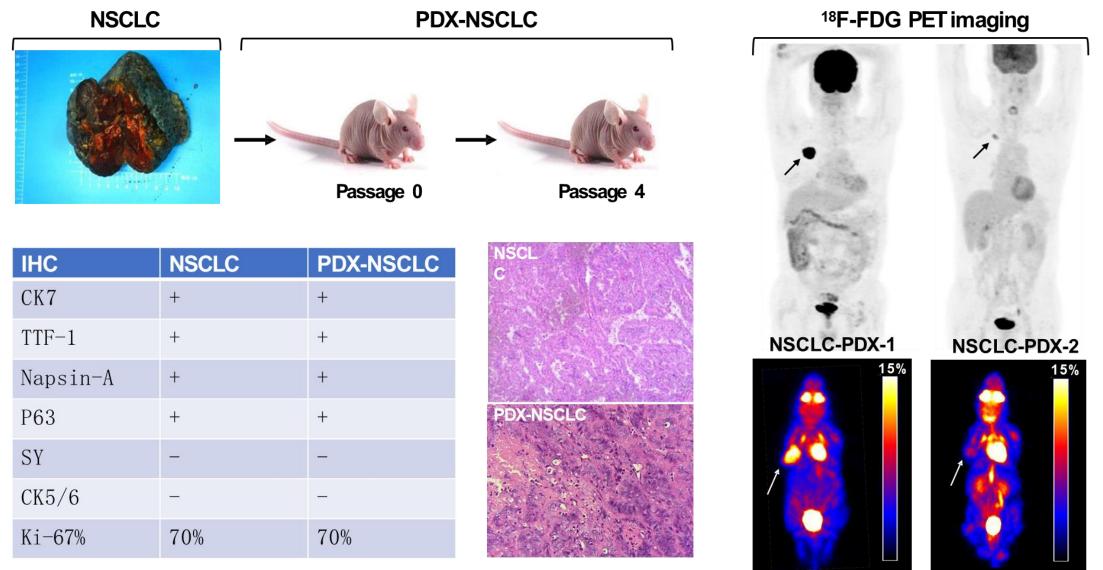
🕱 Penn Medicine

Chief, Division of Nuclear Medicine & Clinical Molecular Imaging

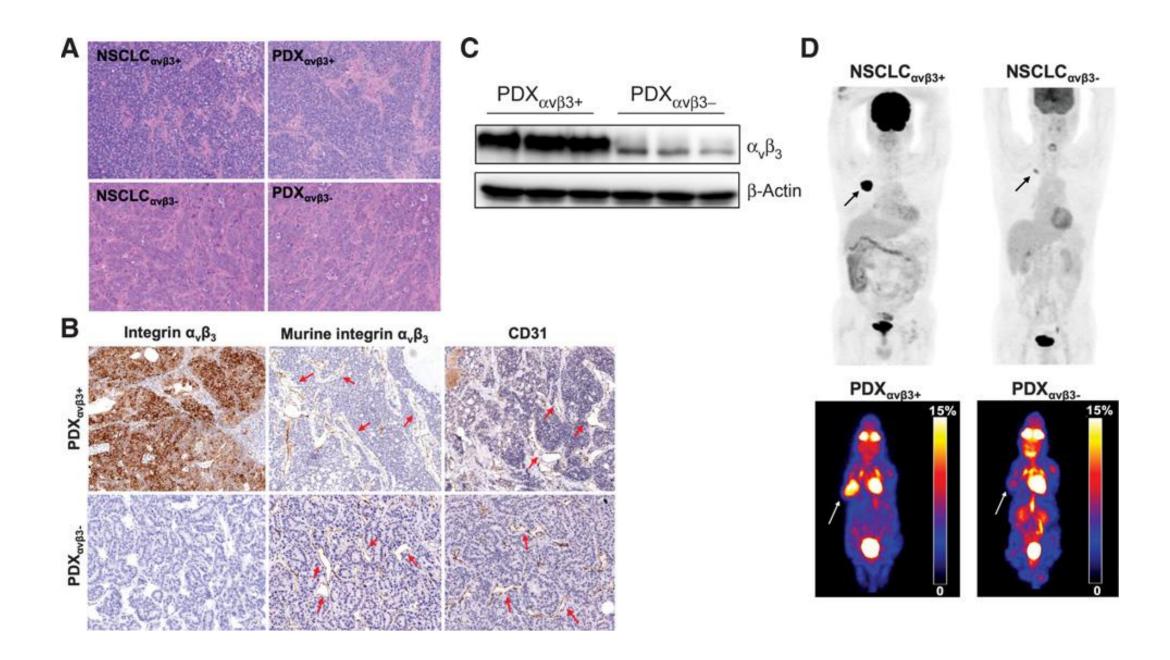
Appendices:


Preclinical studies

- ¹⁷⁷Lu-EBRGD
 - o NSCLC (PDX)


 - o GBM (U87MG)

 - o CRC (MC38)
- ²²⁵Ac-EBTATE



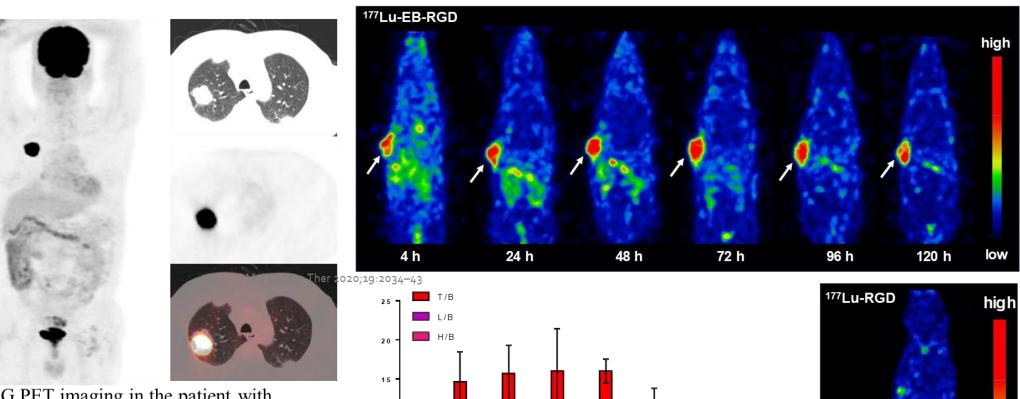
Establishment of patient-derived xenografts in NSCLC (PDX-NSCLC)

Mol Cancer Ther 2020;19:2034–43

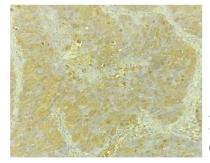
¹⁷⁷Lu-EB-RGD SPECT imaging in $\alpha_{\nu}\beta_{3}$ -positive PDX-NSCLC

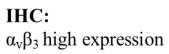
10

24 h


4 h

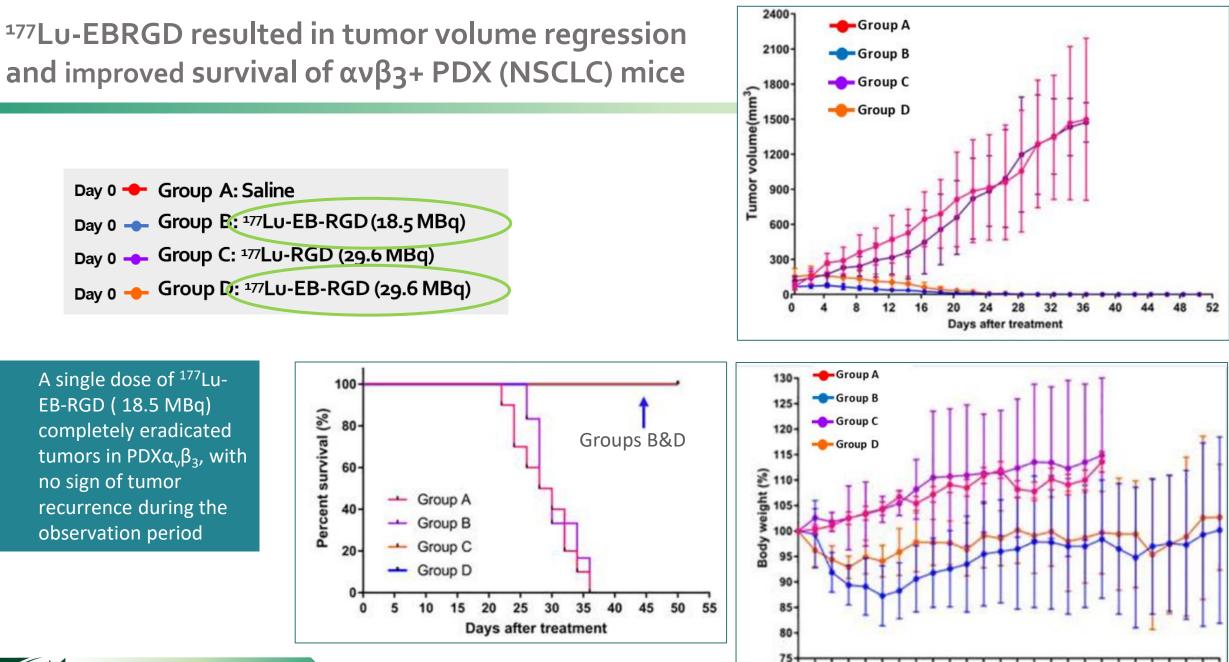
48 h


Timeafterinjection


72 h

96 h

FDG PET imaging in the patient with lung adenocarcinoma, $\alpha_{\nu}\beta_{3}$ high expression


¹⁷⁷Lu-EB-RGD vs. ¹⁷⁷Lu-RGD SPECT imaging in $\alpha_{\nu}\beta_3$ -positive PDX-NSCLC

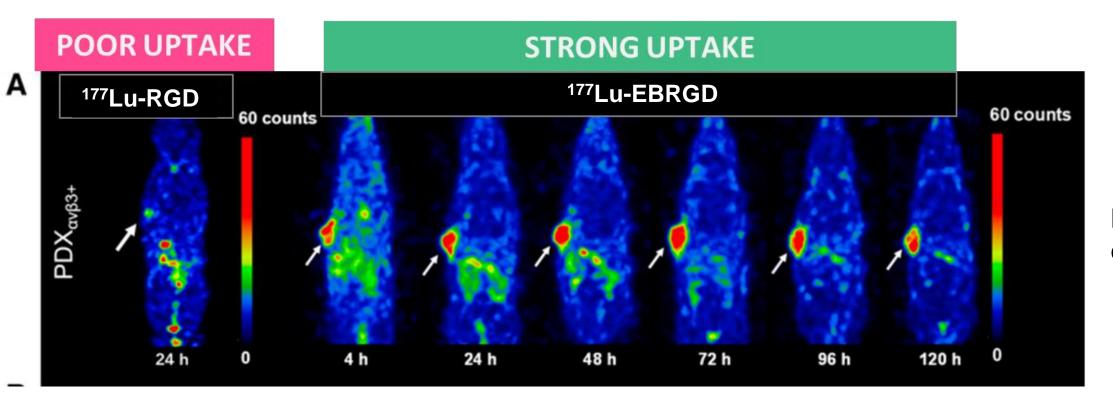
120 h

Mol Cancer Ther 2020;19:2034–43

4 h

low

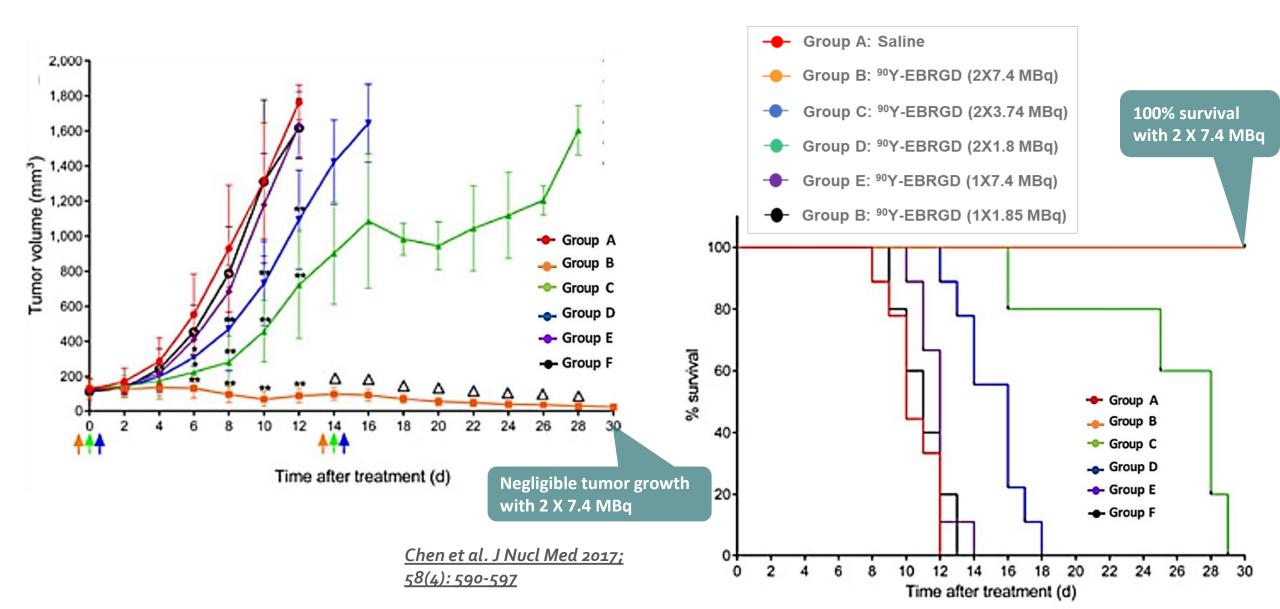
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

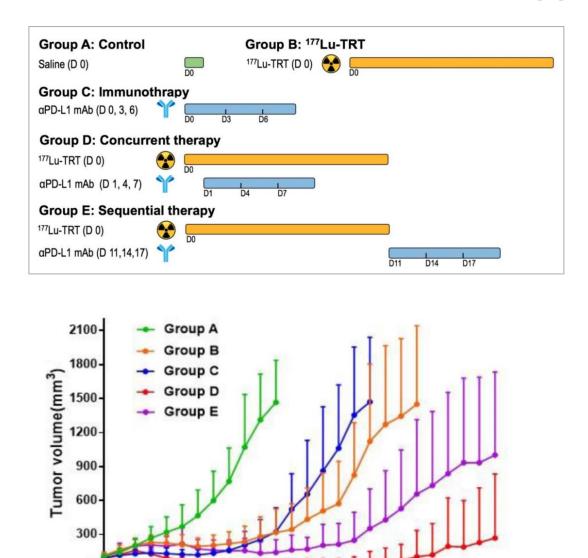

Days after treatment

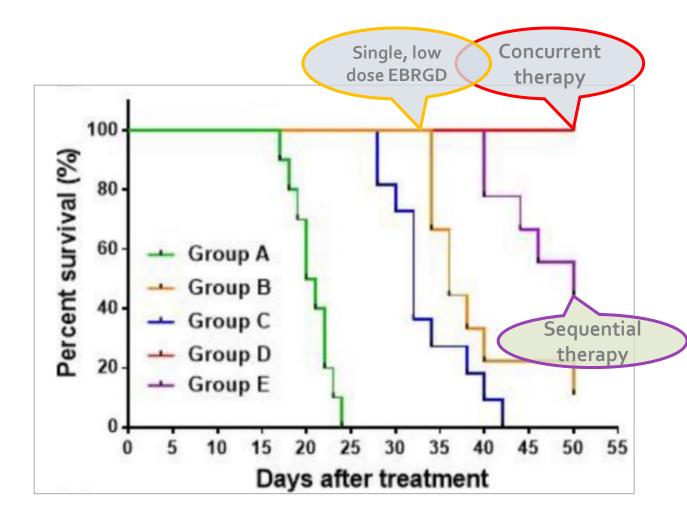
M · T · T · I

Zhao et al. Mol Cancer Ther 2020; 19(10): 2034-2043

¹⁷⁷Lu-EBRGD vs ¹⁷⁷Lu-RGD SPECT imaging in $\alpha_{\nu}\beta_{3}$ positive PDX-NSCLC


EBRGD's longer residence time significantly improves uptake


High $\alpha v\beta 3$ expressors

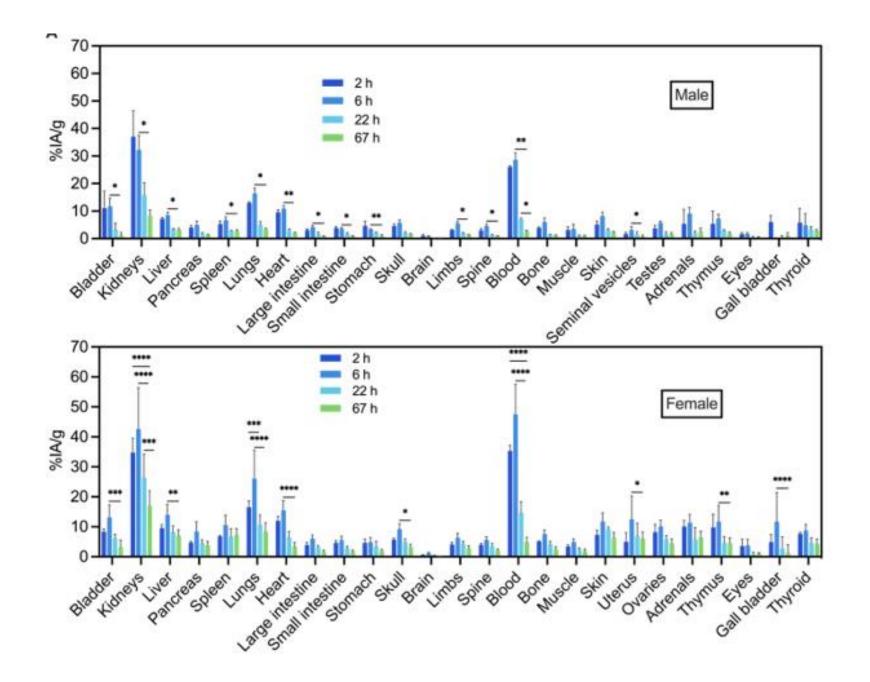

^{9°}Y-EBRGD dose escalation: GBM tumor volume regression, improved survival and complete eradication of tumor at high dose in mice

EBRGD enhances immunotherapy efficacy in colorectal cancer

0 2 4 6 8 101214161820222426283032343638404244464850

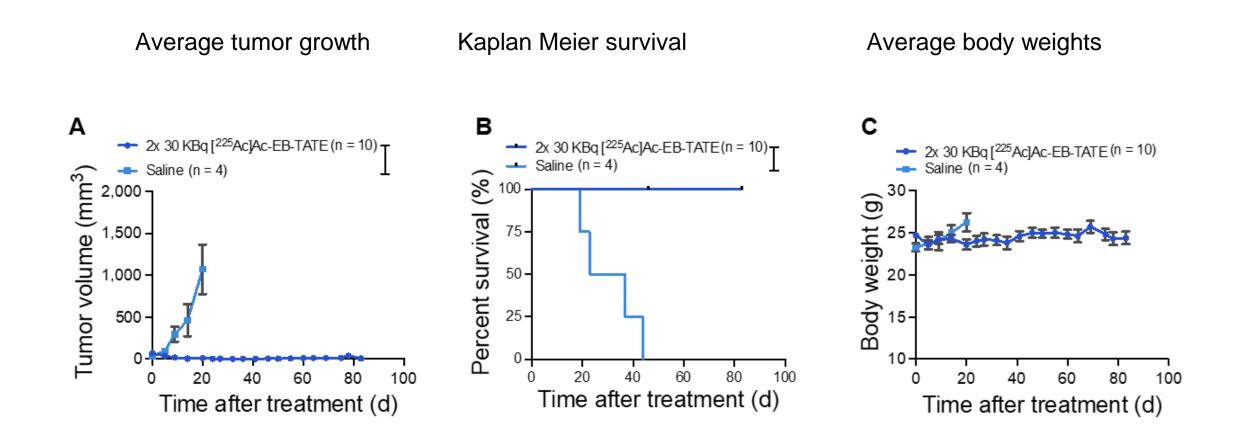
<u>Chen et al. Theranostics 2019; 9(25): 7948-7960</u>

- This therapeutic combination may be a promising approach to treating metastatic tumors in which TRT can be used.
- Clinical translation of the result would suggest that concurrent rather than sequential blockade of the anti-PD-L1 combined with TRT improves overall survival and long-term tumor control.



Long acting [²²⁵Ac]Ac-EBTATE is highly efficacious against somatostatin receptor-2-positive neuroendocrine tumors

• Fabrice N. Njotu1, Humphrey Fonge1*et. al,.


Presented in 2024 SNMMI

*University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan; and Molecular Targeting Technologies, Inc. West Chester, Pennsylvania

Biodistribution and pharmacokinetic of [²²⁵Ac]Ac-EBTATE in healthy BALB/c mice.

Therapy in NCH-H524 (SCLC).

²²⁵Ac-EBTATE IND-enablement update

- Completed GLP toxicology and GMP manufacturing
- Clinical protocols and sites identified for NET and SCLC
- Target IND submission 2025

Conclusions

- Two doses of ²²⁵Ac-EBTATE at 34 kBq, 10 d apart, were well tolerated biochemically and hematologically for 28 d
- ²²⁵Ac-EBTATE (2x 30 kBq, 10 d apart), in NCH-H524 showed 80% complete remission, 100% survival (d83) and 105.6% TGI, 2-fold more than ²²⁵Ac-DOTATATE on d20
- ²²⁵Ac-EBTATE (2x 30 kBq, 10 d apart) in NCH-H727 led to partial responses with 64.4% TGI on d28
- Using 60% less activity of ²²⁵Ac-EBTATE is as effective as ²²⁵Ac-DOTATATE