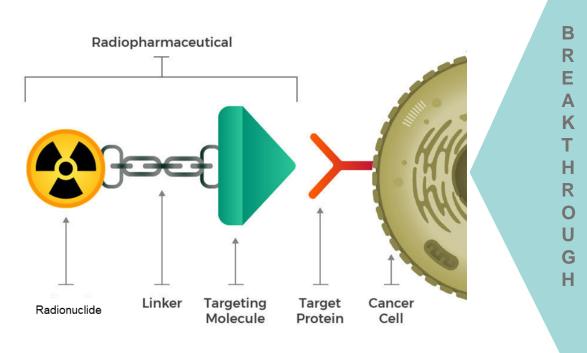
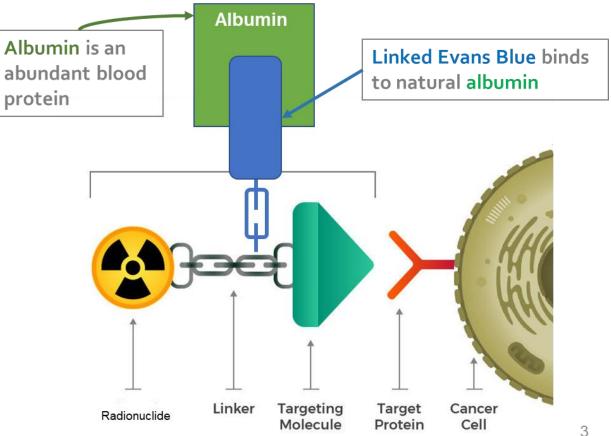
MTTI's TARGETED RADIOTHERAPEUTICS:

A NOVEL APPROACH TO SEE AND TREAT CANCER


Chris Pak President & CEO cpak@mtarget.com

Molecular Targeting Technologies, Inc.



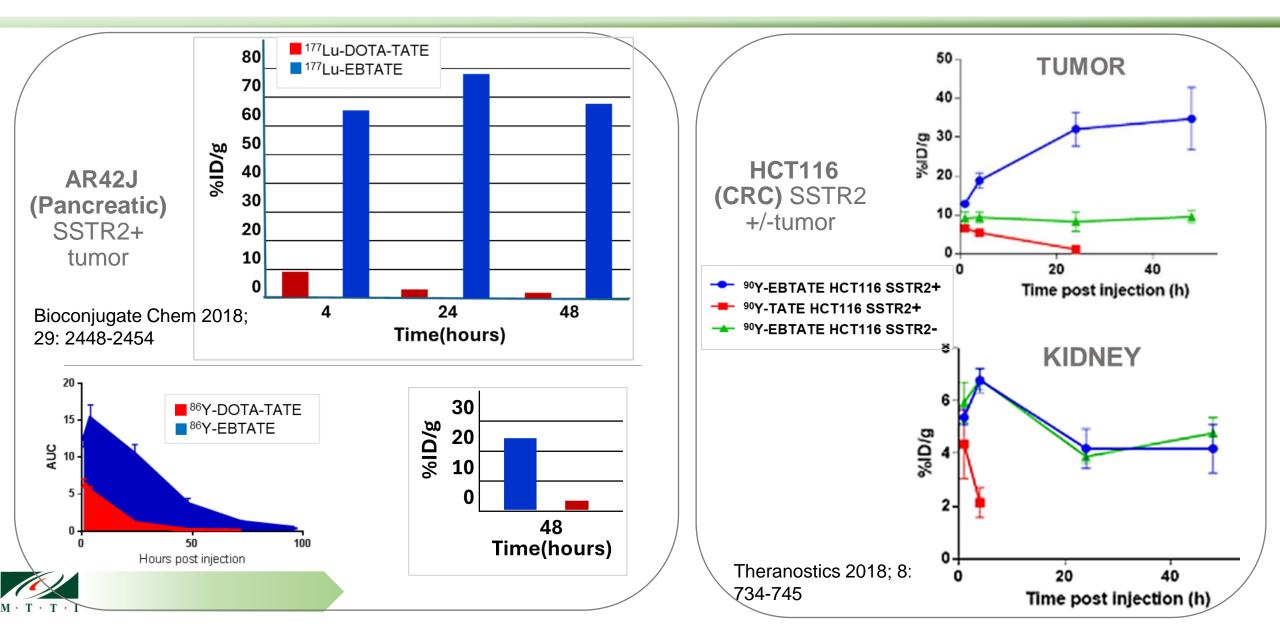
A long-acting, more effective TRT platform

TRTs like Lutathera have short biologic half-lives, limiting efficacy

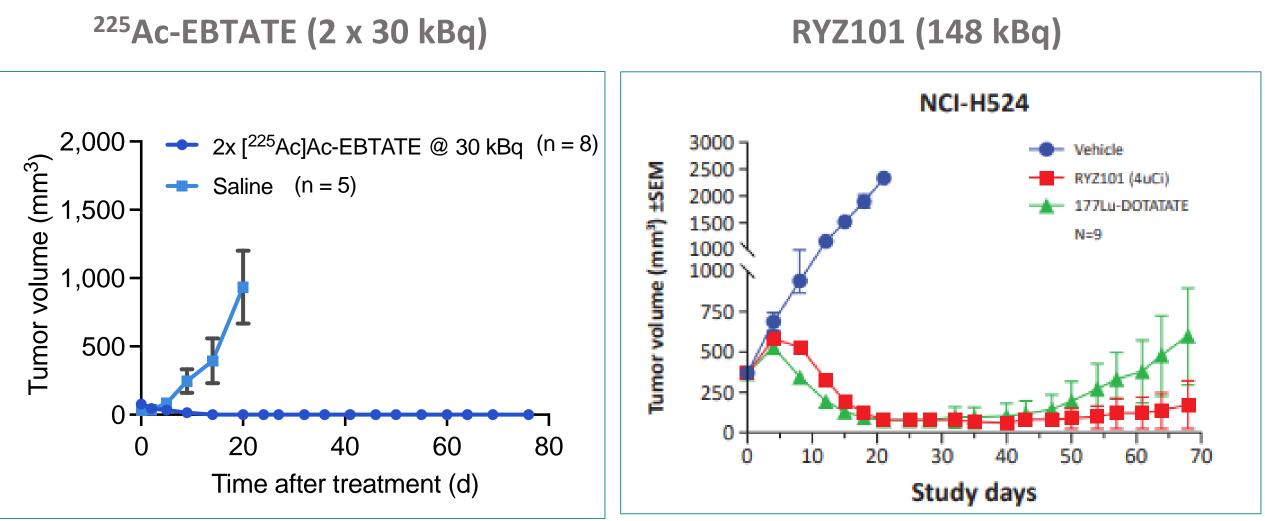
Evans blue (EB) – extends blood half-life increasing tumor uptake, improving efficacy.

Transforming radiotherapy with an Evans blue (EB) moiety

- EB binds to albumin, abundant in the blood (50 mg/mL), resulting in a longer circulatory half-life
- Each albumin binds 8-14 molecules of EB
- Better tissue absorption and retention enhance treatment
- Significantly lower isotope use while maintaining efficacy and safety, improves costs and health economics


Evans blue (EB) Advantages - transforming radiotherapy

	¹⁷⁷ Lu-EBTATE vs. ¹⁷⁷ Lu-DOTA-TATE
Circulatory half-life	Binds to albumin, an abundantblood protein, resulting in aClears rapidlylonger half-life
Tumor uptake in HCT116 CRC tumor model at 24H	78.8% ID/g 3% ID/g
Tumor retention in NET patients	0.049MBq-h/MBq/g 8 Fold greater! 0.0059 MBq-h/MBq/g
Tumor remission in AR42J pancreatic cancer tumor model	Complete None None

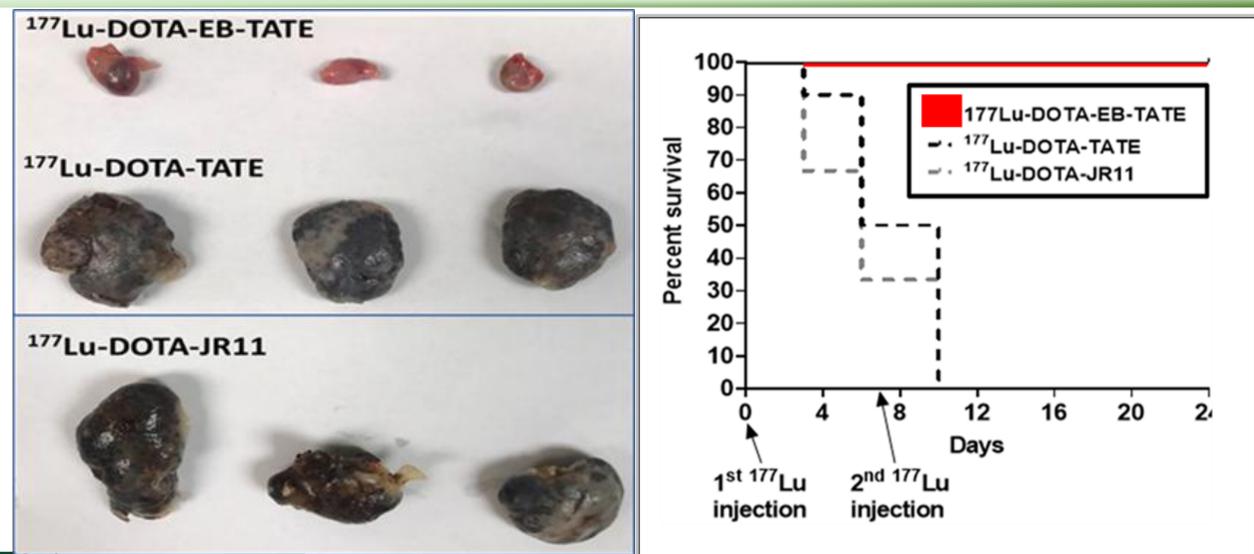

EB impact: Greater retention in AR42J/HCT116 tumor (Preclinical)

¹⁷⁷Lu-EBTATE (78.8% ID/g) vs ¹⁷⁷Lu-DOTA-TATE (3%ID/g) at 24 h

²²⁵Ac-EBTATE vs. RayzeBio RYZ101 in SCLC:

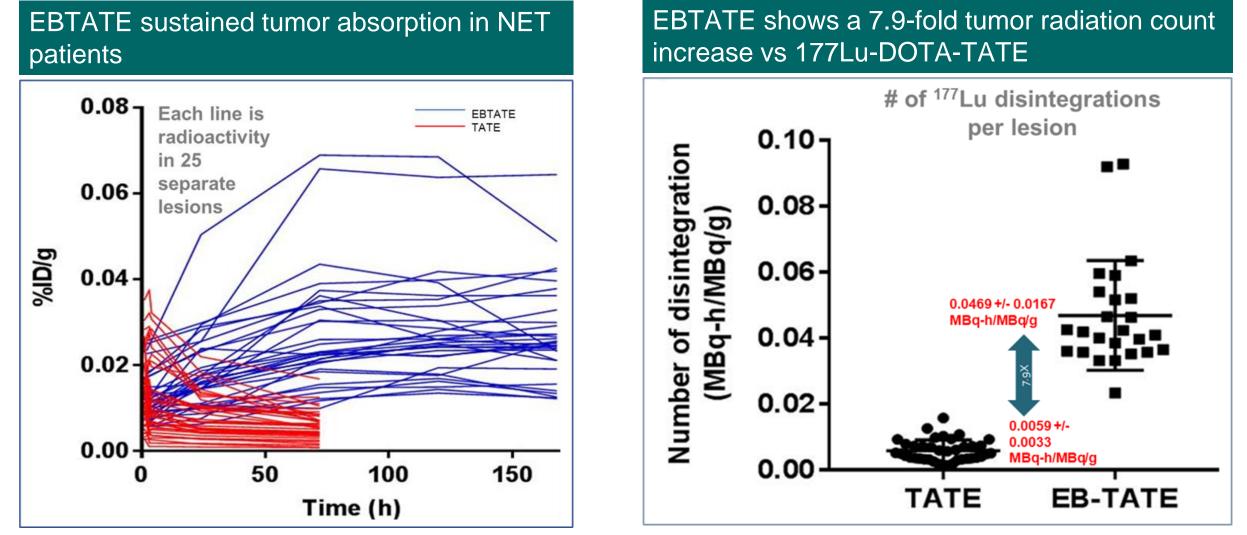
similar efficacy at 40% of the RYZ101 dose (BMS acquired RayzeBio for \$4.1 B in Dec 2023)

Njotu & Fonge et. al., Eur J Nucl Med Mol Imaging. 2025;52(4):1305-1320. doi:10.1007/s00259-024-07011-2 (left figure); RayzeBio **RYZ** publication (right).


6

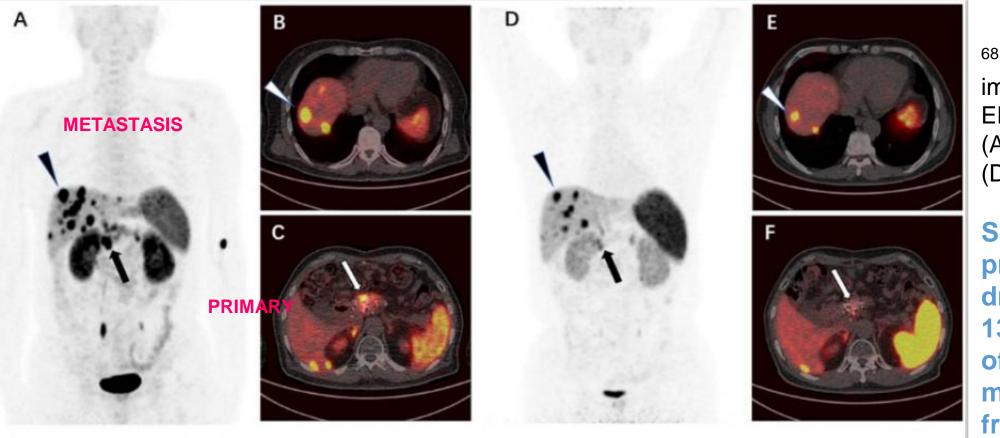
Strategies in increasing retention of TRP at tumor with EB

	lsotope/target	Tumor (cell line/patient)	With EB % ID/g*	No EB %ID/g*	Fold increase
Preclinical	Lu-177/SSTR2	HCT116 (CRC)	78.2	3	26
	Y-86/SSTR2	HCT116 (CRC)	30	1.5	20
	Lu-177/Integrin	Pancreatic (AR42J)	14	3	5
	Cu-64/Integrin	Glioma (U87MG)	16	1	16
Clinical*	Lu-177/SSTR2	NET patient	0.0469 <u>+</u> 0.0167 <u>MBq h/MBq/g</u>	0.0059 <u>+</u> 0.0033 <u>MBq h/MBq/g</u>	8


EB impact: Improved survival in AR42J, pancreatic cancer (Preclinical) ¹⁷⁷Lu & EBTATE (complete tumor remission) vs. TATE analogs (none remission)

M · T · T · I

Thakur et al. Clin Cancer Res 2021; 27(5): 1399-1409; Captured in the Best Achievements in Clinical Thyroidology as <u>NOVEL THERAPEUTICS</u>. Endocrinol Metab 2021;36:30-35*

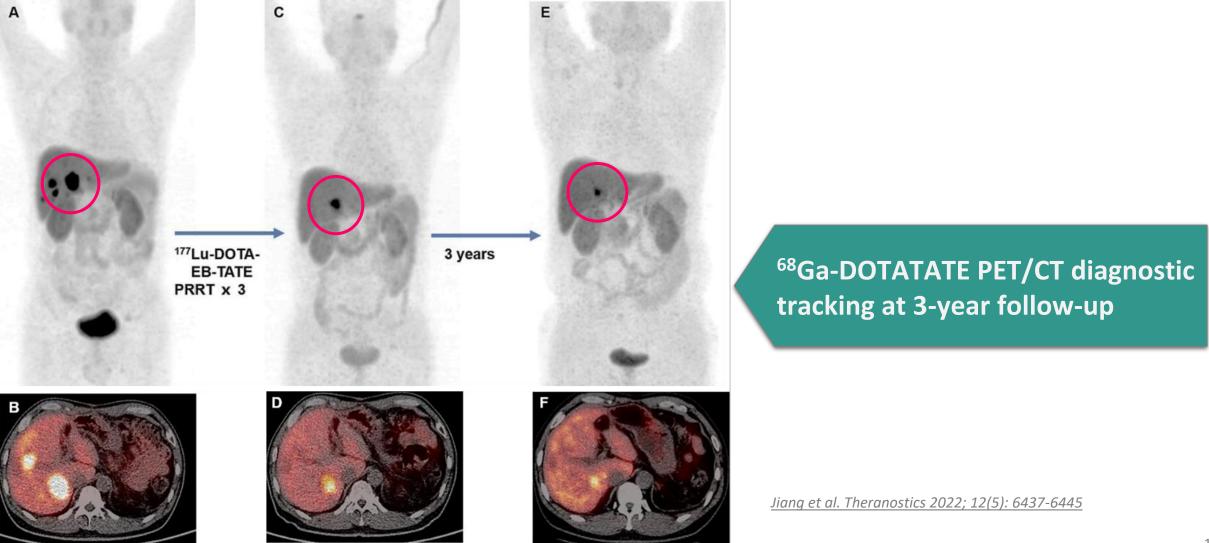

EB improves PK/PD in patients

M · T · T · I

Zhang et al. J Nucl Med 2018; 59: 1699-1705

A single low dose (20 mCi) of EBTATE reduces NET tumor size

Baseline 68Ga-DOTATATE PET/CT


3 months after low-dose (19.5 mCi) of ¹⁷⁷Lu-DOTA-EB-TATE ⁶⁸Ga-DOTA-TATE/CTimages before and afterEBTATE injection:(A-C)-prior to EBTATE(D-F)-after EBTATE

SUVmax at the primary tumor dropped from 26.7 to 13.0 (arrow), uptake of SUVmax of metastasis dropped from 50.6 to 28.6 (triangle) (DEF).

Long-Term Efficacy

EBTATE (3 cycles) achieved favorable 3-year follow-up results in 29 NET patients

EBTATE was safe and well-tolerated in NET patients

Jiang et al. Theranostics 2022; 12(5): 6437-6445

Low, long-term toxicity (CTCAE 5.0) in 29 patients									
Toxicity	CTC-grade	Baseline	1st	cycle	2nd	cycle	3rd	cycle	Avg.Grade 3&4 AE (%)
			2 wks	4 wks	2 wks	4 wks	2 wks	4 wks	
Loukopopia	Grade-1 & 2	4	6	5	6	10	6	4	0%
Leukopenia	Grade-3 & 4	0	0	0	0	0	0	0	070
Thrombocytopenia	Grade-1 & 2	0	3	3	2	4	2	3	13%
ппопросуторениа	Grade-3 & 4	0	0	2	1	1	1	0	
Anemia	Grade-1 & 2	3	6	4	5	5	4	4	3%
Anenna	Grade-3 & 4	1	0	1	0	0	0	0	370
Nonbrotovicity	Grade-1 & 2	7	1	2	1	1	1	0	0%
Nephrotoxicity	Grade-3 & 4	0	0	0	0	0	0	0	070
Hepatotoxicity	Grade-1 & 2	5	1	3	2	1	1	0	20/
	Grade-3 & 4	0	0	1	0	0	0	0	3%

Evans blue (EB) Advantages - transforming radiotherapy

safe & effective at 40% radiation exposure

CLINICAL BENEFIT	¹⁷⁷ Lu-EBTATE	vs. ¹⁷⁷ Lu-DOTA-TATE*
Lower cumulative radiation exposure	Cumulative 11.1 GBq	Cumulative 29.6 GBq
Fewer doses	3 cycles x 100mCi	4 cycles x 200mCi
Higher ORR	43-50 %	43%
Comparable disease control	86.1% after 3Y	79.4-88 %
Stronger IP	Composition of matter to 2037	Formulation patent
Toxicity/admin burden	Doesn't require amino acid pretreatment	Mandated amino acid pretreatment

* Lutathera plus octreotide LAR. Earlier Lutathera monotherapy studies demonstrated ORR of 13-19%. EBTATE shown here is monotherapy

Summary: Transforming radiotherapy with Evans blue(EB)

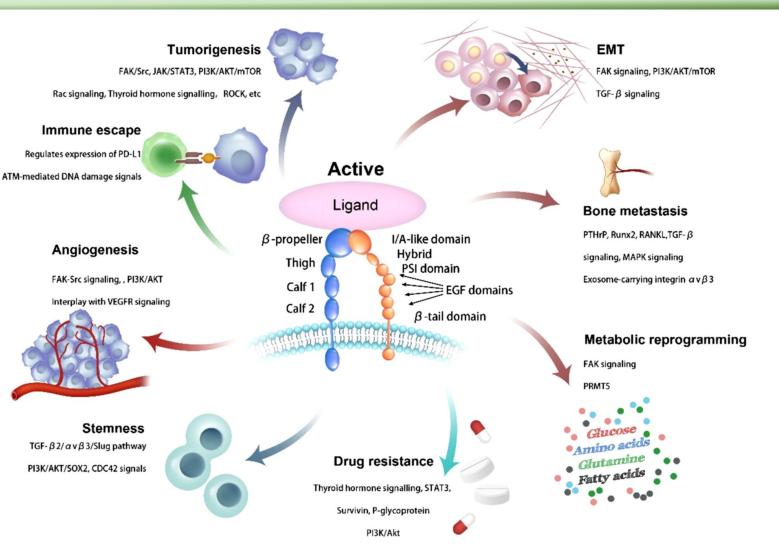
- 8-fold greater retention in NET patients using ¹⁷⁷Lu-EBTATE than with ¹⁷⁷Lu-DOTA-TATE and early studies indicated ¹⁷⁷Lu-EBTATE without amino acids infusion did not affect kidney functions
- Greater retention at <u>78.8%</u> ID/g using ¹⁷⁷Lu-EBTATE vs <u>3%</u> ID/g with ¹⁷⁷Lu-DOTA-TATE at 24 h in HCT116 CRC tumor model. Complete tumor remission using ¹⁷⁷Lu /⁹⁰Y EBTATE vs. TATE analogs (none remission) in AR42J, pancreatic cancer mouse model
- ²²⁵Ac-EBTATE showed 80% complete remission, 100% survival in in NCH-H524 (Small cell lung cancer model)

MTTI Pipeline – Focus on radiopharmaceuticals

PRODUCT	TARGET	INDICATION	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3			
	THERAPEUTICS								
		Neuroendocrine tumors	completed	60+ pts	Showed safety & efficacy	Published PUMC			
Lu-177-EBTATE	SSTR ₂	Neuroendocrine tumors	Phase	1 25		MSKCC			
	Hürthle Cell Thyroid cancer	Phase 1/2	H2 25'		Funded by NIDDK				
		Nasopharyngeal cancer	Phase 1/2	H2 25'					
Ac-225-EBTATE	SSTR ₂	NET/SCLC	Phase 1/2	H2 25'					
Lu-177-EBRGD	αvβ3 Integrin	αvβ3+ solid tumors				Funded by NCI			
		$\alpha v \beta_3$ + brain tumors	IND H:	2 25					
DIAGNOSTICS									
CypH-11 Spray	NIR guided surgery	Ovarian/Peritoneal cancer	IND H1	26'		Funded by NCI			

NCI: National Cancer Institute; NIDDK: National Institute of Diabetes, Digestive and Kidney Diseases:

EBRGD


EBRGD targets $\alpha\nu\beta_3$, an integrin with multiple roles in cancer

αvβ3 in every step of tumor progression:

- tumorigenesis
- epithelial- mesenchymal transition (EMT)
- bone metastasis
- metabolic reprogramming
- drug resistance
- stemness

 $\mathbf{M} \cdot \mathbf{T} \cdot \mathbf{T} \cdot \mathbf{J}$

- angiogenesis
- immune escape

Pharmacological Research 189 (2023) 106694

$\alpha\nu\beta_3$ advantage as cancer target over other integrins

- αvβ3 has low or no expression in normal tissues
- Expression level increases in tumors and correlates with tumor aggressiveness
 - $\circ~$ Some integrins, such as $\alpha _{2}\beta _{1},$ decrease in tumor cells
- αvβ3 interacts with growth factors highly expressed in tumors
 - αvβ₃ and FGFR interaction induces angiogenesis downstream of FGF binding, and αvβs and VEGFR₂ promote VEGF-induced angiogenesis
- αvβ3 is overexpressed in tumors with higher frequency than other integrins

Tumour type	Integrins expressed*	Associated phenotypes
Melanoma	ανβ3 and α5β1	Vertical growth phase ^{35,172–174} and lymph node metastasis
Breast	α6β4 and ανβ3	Increased tumour size and grade ¹⁷⁶ , and decreased survival ¹⁷⁷ ($\alpha 6\beta_4$). Increased bone metastasis ^{36–38,64} ($\alpha \nu\beta_3$)
Prostate	ανβ3	Increased bone metastasis ³⁹
Pancreatic	ανβ3	Lymph node metastasis ⁴⁰
Ovarian	α4β1 and ανβ3	Increased peritoneal metastasis ¹⁷⁸ (α4β1) and tumour proliferation ¹⁷⁹ (ανβ3)
Cervical	ανβ3 and ανβ6	Decreased patient survival
Glioblastoma	ανβ3 and ανβ5	Both are expressed at the tumour—normal tissue margin and have a possible role in invasion ¹⁸¹
Non-small-cell lung carcinoma	α5β1	Decreased survival in patients with lymph node- negative tumours ¹⁸²
Colon	ανβ6	Reduced patient survival

RGD-based PET tracers detect most $\alpha\nu\beta_3$ metastases in cancers

SUVs at tumor site using RGD-based PET without EB

Tracer name	Patient number	Tumor type	Detection rate (Sensitivity)	SUVs
[18F]Galacto-RGD	8	5 Melanomas	6/7 (86%), primary lesion	1.2-10.0
		2 Sarcomas 1 RCC	1/1 (100%), distant metastases 7/8 (88%), all lesions	
[18F]Galacto-RGD	19	10 Musculoskeletal	17/19 (89%), primary lesion	1.2-10.0
		4 Melanoma		
		2 SCCHN		
		2 GBM		
		1 Breast cancer		
[¹⁸ F]Galacto-RGD	11	11 SCCHN	10/12 (83%), primary lesion	2.2-5.8
			2/6 (33%), lymph nodes	
			12/18 (67%), all lesions	
[¹⁸ F]Galacto-RGD	16	10 NSCLC	13/14 (93%), primary lesion	0.3-6.8
		2 RCC	7/13 (54%), lymph nodes	
		1 SCCHN	25/32 (78%), metastases	
		1 Rectal cancer 1 Breast cancer	45/59 (76%), all lesions	
[18F]Galacto-RGD	12	12 GBM	11/12 (92%), primary lesion	0.8-2.8
[¹⁸ F]Galacto-RGD	16	16 Breast cancer	12/12 (100%), primary lesion	11.4-8.7
			3/8 (38%), lymph nodes	
			11/24 (46%), metastases	
			26/44 (59%), all lesions	

Tracer name	Patient number	Tumor type	Detection rate (Sensitivity)	SUVs
[18F]Fluciclatide	7	7 Breast cancer	1/1 (100%), primary lesion	1.4-40.0
			15/17 (88%), metastases	
			16/17 (94%), all lesions	
[¹⁸ F]Fluciclatide	17	11 RCC	10/10 (100%), primary lesion	1.8-10.0
		6 Melanoma	5/7 (71%), metastases	
[¹⁸ F]RGD-K5	12	Breast cancer	15/17 (88%), all lesions 122/157 (77.7%), all lesion	
[¹⁸ F]FPPRGD2	8	Breast cancer	8/8 (100%), primary lesion	2.4-9.4
			4/5 (80%), lymph nodes	
			17/17 (100%), metastases 29/30 (97%), all lesions	
[¹⁸ F]FPPRGD2	15	Recurrent GBM	17/17 (100%), primary lesion	0.8-5.8
[18F]Alfatide	9	NSCLC	9/9 (100%), primary lesion	2.91±0.73
[¹⁸ F]Alfatide II	30	Bone metastases	100%, osteolytic metastases 70%, osteoblastic metastases 100%, mixed bone metastases 98%, bone marrow metastases 92%, all metastases	
[¹⁸ F]Alfatide II	9	Brain metastases	20/20 (100%), brain metastases	51.8-10.0
[⁶⁸ Ga]NOTA-PRGD2	12	Glioma	10/12 (83.3%), primary lesion	0.5-2.31

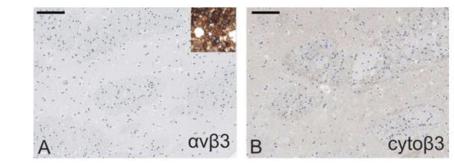
<u>Theranostics 2016; 6(1): 78-92.</u>

αvβ3 integrin is overexpressed in >76% NSCLC patients*

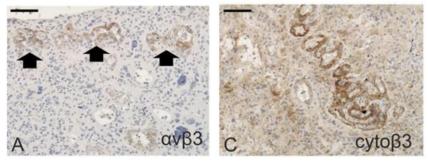
- $\alpha \nu \beta_3$ expressed in tumor and not in normal cells
- αvβ₃ correlates with tumor grade, progression, metastases and advanced clinical stage

*Boger et al. Virchows Arch. 2014;464(1):69-78.; Echavidre et. al., Pharmaceutics. 2022;14(5):1053; Jin et al. PLoS One. 2012;7(10):e48575, Kariya et. al. Comm Biol 2021;4:490.

- GBM
- NSCLC
- Breast cancer
- Melanoma
- Sarcoma
- RCC
- SCCHN
- Glioma
- Musculoskeletal cancers
- Rectal Cancer
- Bone metastases



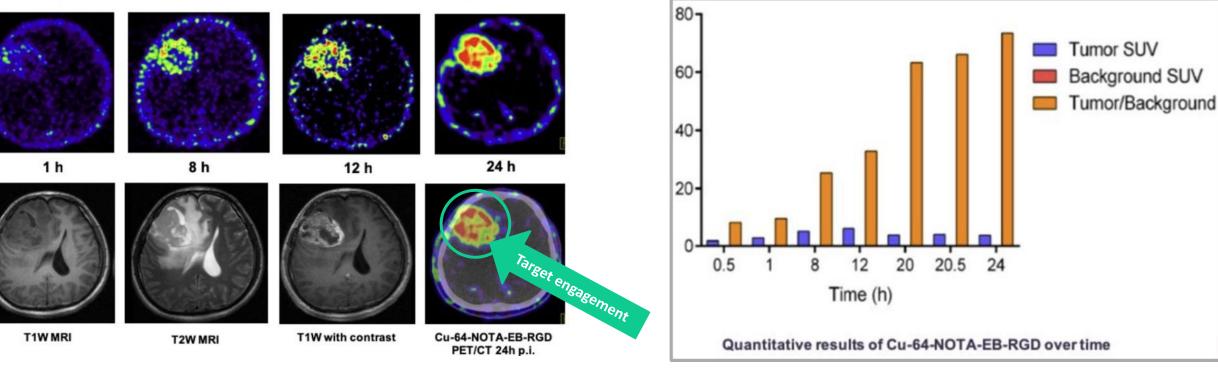
$\alpha\nu\beta_3$ overexpressed in neovascular cells & 60% of GBM patients*


- αvβ₃ integrin has low or no expression in normal tissues, overexpressed in many tumors
- RGD based PET tracer detects 100% primary lesions in cancer
- αvβ₃ was found in neovascular cells and tumor cells

Brain Pathology 2008;18:378; Theranostics 2016;6:78, J Neuropath Exp Neur 2013;72:194

$\alpha\nu\beta_3$ has low/no expression in normal human brain samples

 $\alpha\nu\beta_3$ has elevated expression in GBM tumor vessels and parenchymal region



	αvβ3 positive tissues
Normal brain	0/78
Glioblastoma (WHO IV)	86/160

*Schittenhelm 2013, Echavidre 2022

⁶⁴Cu-EBRGD – robust target engagement in GBM patients

Glioblastoma Multiforme Patient

Axial PET slices of glioblastoma patient injected with ⁶⁴Cu-EB-RGD at different time points p.i.

Zhang et al. J Nucl Med 2020; 61(Suppl 1): 349

Signal/background ratio increased over time

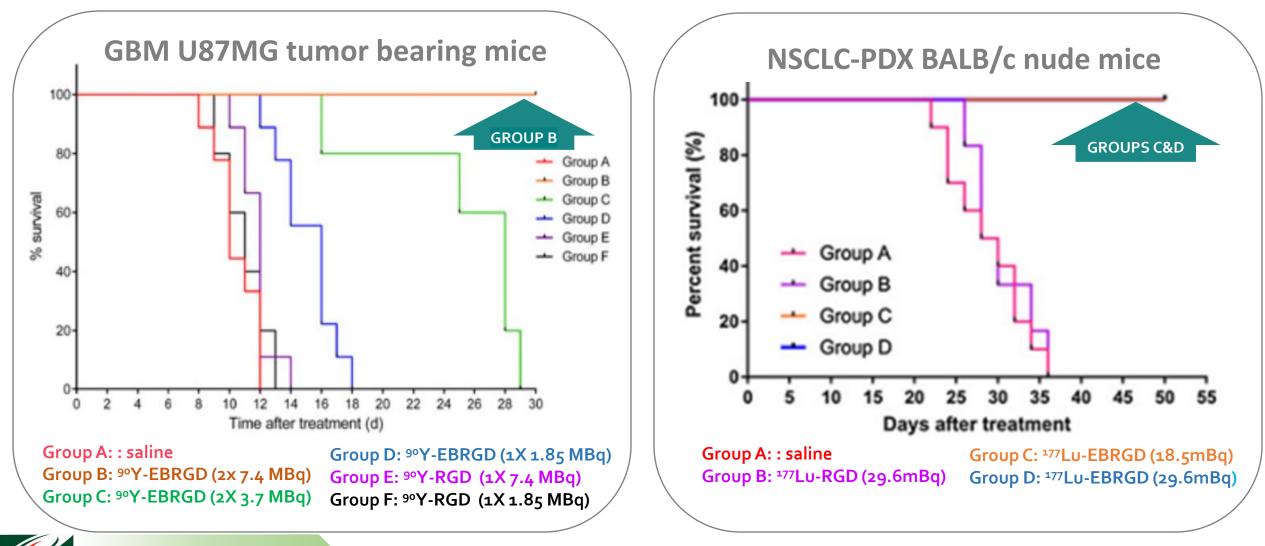
Is residence time important?

Merck KGaA spent >10 years developing a targeted therapy for $\alpha\nu\beta_3$ in GBM

- Cilengitide, a peptide $\alpha\nu\beta3$ antagonist, failed in a Phase 3 GBM trial
- A validated target, $\alpha \nu \beta_3$, has been studied in the past
- Proposed rationale for the failure:
 - Signaling based therapy is not potent enough to kill cancer cells

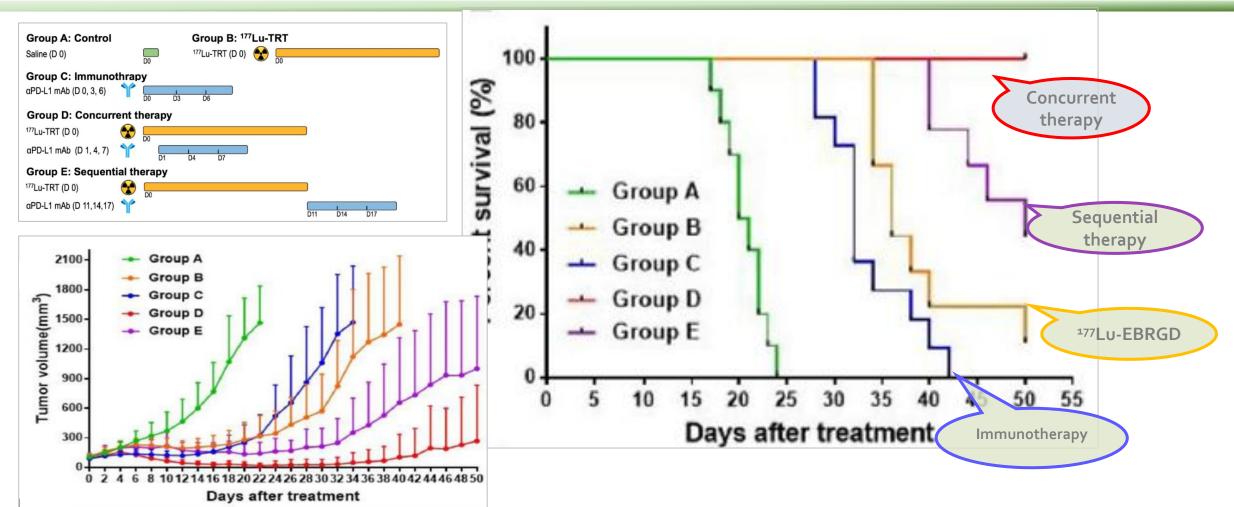
Short residence time is insufficient

Evans blue may overcome this challenge


Novartis began a Phase I trial with an $\alpha\nu\beta_3$ and $\alpha\nu\beta_5$ dual targeting TRT (116 pts)

- A Phase I, Open-label, Multi-center Study to Evaluate the Safety, Tolerability, Dosimetry and Preliminary Activity of [¹⁷⁷Lu]Lu-FF58 in Patients (N=116)With Selected Advanced Solid Tumors (NCT05977322)
- FF58 is an $\alpha\nu\beta_3$ and $\alpha\nu\beta_5$ dual targeting molecule without the albumin binding motif

MTTI demonstrated RGD without Evans blue is ineffective in tumor control while EBRGD is effective in preclinical models.



EB Impact: Improved survival in GBM and NSCLC (Preclinical) ¹⁷⁷Lu & ⁹⁰Y EBRGD vs. RGD analogs

 $\mathbf{M} \cdot \mathbf{T} \cdot \mathbf{T} \cdot \mathbf{I}$

¹⁷⁷Lu-EB-RGD had synergistic effect with <mark>immunotherapy</mark> in a colorectal cancer model

Chen et al. Theranostics 2019; 9(25): 7948-7960

EBRGD is designed to overcome $\alpha\nu\beta_3$ therapy failures

A validated target

- αvβ₃ is required for angiogenesis and tumorigenesis in cancer
- $\alpha \nu \beta_3$ therapy has been challenging

EBRGD	
advantage	

• EBRGD extends *in vivo* circulatory half-life and tumor residence time, enabling effective payload delivery

Strong *in vivo* efficacy - Convincing efficacy in $\alpha\nu\beta_3$ positive NSCLC, CRC and GBM model

- $\alpha\nu\beta_3$ is overexpressed in NSCLC, CRC, GBM and many other cancers
- EBRGD demonstrated:
 - ✓ efficacy in NSCLC, CRC and GBM models
 - ✓ tumor eradication in high expressing PDXανβ3+
 - ✓ synergistic effect with immunotherapy
 - ✓ target engagement and sustained tumor absorption in GBM patients

